SOME RESULTS FOR QUASI-STATIONARY DISTRIBUTIONS OF BIRTH-DEATH PROCESSES

被引:23
作者
KIJIMA, M [1 ]
机构
[1] UNIV SYDNEY,DEPT MATH STAT,SYDNEY,NSW 2006,AUSTRALIA
关键词
INVARIANT MEASURES; ORTHOGONAL POLYNOMIALS; STOCHASTIC BOUNDS; TRUNCATIONS;
D O I
10.2307/3214486
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quasi-stationary distributions are considered in their own right, and from the standpoint of finite approximations, for absorbing birth-death processes. Results on convergence of finite quasi-stationary distributions and a stochastic bound for an infinite quasi-stationary distribution are obtained. These results are akin to those of Keilson and Ramaswamy (1984). The methodology is a synthesis of Good (1968) and Cavender (1978).
引用
收藏
页码:503 / 511
页数:9
相关论文
共 19 条
[1]   QUASI-STATIONARY DISTRIBUTIONS OF BIRTH-AND-DEATH PROCESSES [J].
CAVENDER, JA .
ADVANCES IN APPLIED PROBABILITY, 1978, 10 (03) :570-586
[2]   ON QUASI-STATIONARY DISTRIBUTIONS IN ABSORBING CONTINUOUS-TIME FINITE MARKOV CHAINS [J].
DARROCH, JN ;
SENETA, E .
JOURNAL OF APPLIED PROBABILITY, 1967, 4 (01) :192-&
[3]  
Darroch JN, 1965, J APPL PROBAB, V2, P88, DOI DOI 10.2307/3211876
[4]  
KARLIN S, 1957, T AM MATH SOC, V85, P489, DOI DOI 10.1090/S0002-9947-1957-0091566-1
[5]  
Karlin S., 1957, T AM MATH SOC, V86, P366, DOI [10.2307/1993021, DOI 10.2307/1993021]
[6]  
KEILSON J, 1984, STOCH P APPL, V24, P631
[7]  
Kesten H., 1968, MATH REV, V39, P410
[8]   SPECTRAL THEORY FOR THE DIFFERENTIAL EQUATIONS OF SIMPLE BIRTH AND DEATH PROCESSES [J].
LEDERMANN, W ;
REUTER, GEH .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1954, 246 (914) :321-369
[9]  
Mandl P., 1960, CAS PEST MAT, V85, P448
[10]   REVERSIBILITY, INVARIANCE AND MU-INVARIANCE [J].
POLLETT, PK .
ADVANCES IN APPLIED PROBABILITY, 1988, 20 (03) :600-621