UPSTREAM DIFFERENCING FOR MULTIPHASE FLOW IN RESERVOIR SIMULATION

被引:72
作者
BRENIER, Y
JAFFRE, J
机构
[1] Inst Natl de Recherche en, Informatique et en Automatique, Chesnay
关键词
CONSERVATION LAWS; MULTIPHASE FLOW; RESERVOIR SIMULATION; RIEMANN SOLVER; UPSTREAM WEIGHTING;
D O I
10.1137/0728036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Upstream differencing for multiphase flow in reservoir simulation is analyzed. The associated numerical flux is shown to be well defined, monotone, Lipschitz-continuous, and consistent. In the case of a two-phase flow the corresponding numerical scheme is convergent and the numerical flux is compared to that of Godunov and Engquist-Osher. Finally, a simple way to obtain a higher-order scheme is outlined.
引用
收藏
页码:685 / 696
页数:12
相关论文
共 13 条
[1]  
Chavent G., 1986, MATH MODELS FINITE E
[2]   MONOTONE-DIFFERENCE APPROXIMATIONS FOR SCALAR CONSERVATION-LAWS [J].
CRANDALL, MG ;
MAJDA, A .
MATHEMATICS OF COMPUTATION, 1980, 34 (149) :1-21
[3]  
ENGQUIST B, 1981, MATH COMPUT, V36, P321, DOI 10.1090/S0025-5718-1981-0606500-X
[4]  
Godunov S K, 1959, MAT SBORNIK, V47, P271
[5]   ON UPSTREAM DIFFERENCING AND GODUNOV-TYPE SCHEMES FOR HYPERBOLIC CONSERVATION-LAWS [J].
HARTEN, A ;
LAX, PD ;
VAN LEER, B .
SIAM REVIEW, 1983, 25 (01) :35-61
[6]  
Kuznetsov N.N., 1976, SOVIET MATH DOKL, V17, P1203
[7]   CONVERGENCE OF GENERALIZED MUSCL SCHEMES [J].
OSHER, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (05) :947-961
[8]  
Peaceman DW., 2000, FUNDAMENTALS NUMERIC
[9]  
Sammon P.H., 1988, SPE RES ENG, V3, P1053, DOI DOI 10.2118/14045-PA