NEW FERMIONIC DESCRIPTION OF QUANTUM SPIN LIQUID-STATE

被引:74
作者
TSVELIK, AM [1 ]
机构
[1] PRINCETON UNIV,DEPT PHYS,PRINCETON,NJ 08544
关键词
D O I
10.1103/PhysRevLett.69.2142
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A novel approach to S = 1/2 antiferromagnets with strong quantum fluctuations based on the representation of spin-1/2 operators as bilinear forms of real (Majorana) fermions is suggested. This representation does not contain unphysical states and thus does not require the imposition of constraints on the fermionic Hilbert space. This property allows one to construct a simple and effective mean field theory of the spin liquid state. As an example illustrating the basic properties of this state I consider a model of the Kondo lattice. It is shown that this model has a singlet ground state; elementary excitations have a spectral gap and are S = 1 real (Majorana) fermions.
引用
收藏
页码:2142 / 2144
页数:3
相关论文
共 15 条
[1]   THE RESONATING VALENCE BOND STATE IN LA2CUO4 AND SUPERCONDUCTIVITY [J].
ANDERSON, PW .
SCIENCE, 1987, 235 (4793) :1196-1198
[2]   RESONATING VALENCE BONDS - NEW KIND OF INSULATOR [J].
ANDERSON, PW .
MATERIALS RESEARCH BULLETIN, 1973, 8 (02) :153-160
[3]   FUNCTIONAL INTEGRAL THEORIES OF LOW-DIMENSIONAL QUANTUM HEISENBERG MODELS [J].
AROVAS, DP ;
AUERBACH, A .
PHYSICAL REVIEW B, 1988, 38 (01) :316-332
[4]  
AROVAS DP, 1988, PHYS REV LETT, V61, P617
[5]   CLASSICAL MECHANICS FOR BOSE-FERMI SYSTEMS [J].
CASALBUONI, R .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1976, 33 (03) :389-431
[6]   A QUANTUM FLUIDS APPROACH TO FRUSTRATED HEISENBERG MODELS [J].
CHANDRA, P ;
COLEMAN, P ;
LARKIN, AI .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1990, 2 (39) :7933-7972
[7]  
COLEMAN P, IN PRESS
[8]   GAUGE THEORY OF ANTIFERROMAGNETISM IN TWO DIMENSIONS FOR LARGE RANK SYMMETRY GROUP [J].
Khveshchenko, D. V. ;
Wiegmann, P. B. .
MODERN PHYSICS LETTERS B, 1990, 4 (01) :17-28
[9]  
Khveshchenko D. V., 1989, Modern Physics Letters B, V3, P1383, DOI 10.1142/S0217984989002089
[10]  
LAUGHLIN RB, 1989, PHYS REV B, V41, P664