XYLOSE FERMENTATION BY SACCHAROMYCES-CEREVISIAE

被引:19
作者
KOTTER, P [1 ]
CIRIACY, M [1 ]
机构
[1] HEINRICH HEINE UNIV, INST MIKROBIOL, UNIV STR 1, W-4000 DUSSELDORF 1, GERMANY
关键词
D O I
暂无
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We have performed a comparative study of xylose utilization in Saccharomyces cerevisiae transformants expressing two key enzymes in xylose metabolism, xylose reductase (XR) and xylitol dehydrogenase (XDH), and in a prototypic xylose-utilizing yeast, Pichia stipitis. In the absence of respiration (see text), baker's yeast cells convert half of the xylose to xylitol and ethanol, whereas P. stipitis cells display rather a homofermentative conversion of xylose to ethanol. Xylitol production by baker's yeast is interpreted as a result of the dual cofactor dependence of the XR and the generation of NADPH by the pentose phosphate pathway. Further limitations of xylose utilization in S. cerevisiae cells are very likely caused by an insufficient capacity of the non-oxidative pentose phosphate pathway, as indicated by accumulation of sedoheptulose-7-phosphate and the absence of fructose-1,6-bisphosphate and pyruvate accumulation. By contrast, uptake at high substrate concentrations probably does not limit xylose conversion in S. cerevisiae XYL1/XYL2 transformants.
引用
收藏
页码:776 / 783
页数:8
相关论文
共 47 条
[1]   CLONING AND EXPRESSION IN SACCHAROMYCES-CEREVISIAE OF THE NAD(P)H-DEPENDENT XYLOSE REDUCTASE-ENCODING GENE (XYL1) FROM THE XYLOSE-ASSIMILATING YEAST PICHIA-STIPITIS [J].
AMORE, R ;
KOTTER, P ;
KUSTER, C ;
CIRIACY, M ;
HOLLENBERG, CP .
GENE, 1991, 109 (01) :89-97
[2]   THE FERMENTATION OF XYLOSE - AN ANALYSIS OF THE EXPRESSION OF BACILLUS AND ACTINOPLANES XYLOSE ISOMERASE GENES IN YEAST [J].
AMORE, R ;
WILHELM, M ;
HOLLENBERG, CP .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1989, 30 (04) :351-357
[3]  
Barnett JA, 1976, ADV CARBOHYD CHEM, V32, P126
[4]  
Bergmeyer HU, 1984, METHODS ENZYMATIC AN
[6]   EXPRESSION OF KINASE-DEPENDENT GLUCOSE-UPTAKE IN SACCHAROMYCES-CEREVISIAE [J].
BISSON, LF ;
FRAENKEL, DG .
JOURNAL OF BACTERIOLOGY, 1984, 159 (03) :1013-1017
[7]   INVOLVEMENT OF KINASES IN GLUCOSE AND FRUCTOSE UPTAKE BY SACCHAROMYCES-CEREVISIAE [J].
BISSON, LF ;
FRAENKEL, DG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (06) :1730-1734
[8]  
BROACH JR, 1983, METHOD ENZYMOL, V101, P307
[9]  
BRUINENBERG PM, 1983, J GEN MICROBIOL, V129, P965
[10]   UTILIZATION OF FORMATE AS AN ADDITIONAL ENERGY-SOURCE BY GLUCOSE-LIMITED CHEMOSTAT CULTURES OF CANDIDA-UTILIS CBS-621 AND SACCHAROMYCES-CEREVISIAE CBS-8066 - EVIDENCE FOR THE ABSENCE OF TRANSHYDROGENASE ACTIVITY IN YEASTS [J].
BRUINENBERG, PM ;
JONKER, R ;
VANDIJKEN, JP ;
SCHEFFERS, WA .
ARCHIVES OF MICROBIOLOGY, 1985, 142 (03) :302-306