SOME ASYMPTOTIC BOUNDARY BEHAVIOR OF SOLUTIONS OF NONLINEAR PARABOLIC INITIAL-BOUNDARY VALUE-PROBLEMS

被引:3
作者
CANNON, JR [1 ]
DUCHATEAU, PC [1 ]
机构
[1] COLORADO STATE UNIV,DEPT MATH,FT COLLINS,CO 80523
关键词
D O I
10.1016/0022-247X(79)90134-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For parabolic initial boundary value problems various results such as limt ↓ 0{ ( ∂u t6x)(0, t) ( ∂uα ∂x)(0, t)} = 1, where u satisfies ∂u ∂t = a(u)( ∂2u ∂x2), 0 < x < 1, 0 < t ≤ T, u(x, 0) = 0, u(0, t) = |1(t), 0 < t ≤ T, u(1, t) = |2(t), 0 < t ≤ T, uαsatisfies ( ∂uα ∂t) = α( ∂2uα ∂x2), 0 < x < 1, 0 < t ≤ T, uα(x, 0) = 0, uα(0, t) = |1(t), 0 < t ≤ T, uα(1, t) = |2(t), 0 < t ≤ T, and α = a(0), are demonstrated via the maximum principle and potential theoretic estimates. © 1979.
引用
收藏
页码:536 / 547
页数:12
相关论文
共 7 条
[1]  
Friedman A., 1958, PAC J MATH, V8, P201, DOI [10.2140/pjm.1958.8.201, DOI 10.2140/PJM.1958.8.201]
[2]  
KELLOGG OD, 1953, F POTENTIAL THEORY, P265
[3]  
Ladyzenskaja O.A., 1968, LINEAR QUASILINEAR E
[4]   A STRONG MAXIMUM PRINCIPLE FOR PARABOLIC EQUATIONS [J].
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1953, 6 (02) :167-177
[5]  
Protter Murray H., 1984, MAXIMUM PRINCIPLES D, DOI [10.1007/978-1-4612-5282-5, DOI 10.1007/978-1-4612-5282-5]
[6]  
Saul'yev V.K., 1964, INTEGRATION EQUATION
[7]  
Widder DV., 1975, THE HEAT EQUATION