CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .1. CAUCHY-PROBLEM, GENERAL-CASE

被引:398
作者
GINIBRE, J
VELO, G
机构
[1] Laboratoire de Physique Théorique et Hautes Energies, Laboratoire associé au Centre National, la Recherche Scientifique. Université de Paris-Sud
关键词
D O I
10.1016/0022-1236(79)90076-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Cauchy problem for a class of nonlinear Schrödinger equations of the form i( du dt) = (-Δ + m)u + f(u) in Rn with n ≥ 2, where m is a real constant and f a complex valued nonlinear function. Under suitable assumptions on f, we prove the existence and uniqueness of global solutions of the initial value problem in the Sobolev space H1(Rn. The assumptions of f include continuous differentiability, the condition f(0) = 0 and suitable power bounds both at zero and at infinity. They cover the case of a single power f(u) = λ | u |p - 1u where 1 ≤ p < (n + 2) (n - 2) if λ ≥ 0 and 1 ≤ p < (n + 4) n if λ ≤ 0. In subsequent papers, we shall treat the scattering theory for the same class of equations, and a number of special cases, in particular the case of the dimension n = 1. © 1979.
引用
收藏
页码:1 / 32
页数:32
相关论文
共 11 条
[1]  
BAILLON JB, 1977, CR ACAD SCI A MATH, V284, P869
[2]  
DEGENNES PG, 1966, SUPERCONDUCTIVITY ME, pCH6
[3]  
Dunford N, 1958, LINEAR OPERATORS, VI
[4]   BLOWING UP OF SOLUTIONS TO CAUCHY-PROBLEM FOR NONLINEAR SCHRODINGER EQUATIONS [J].
GLASSEY, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (09) :1794-1797
[5]  
Hille E., 1957, FUNCTIONAL ANAL SEMI
[6]  
LIN JD, UNPUBLISHED
[7]  
Lions J.L., 1968, PROBLEMES LIMITES NO
[8]  
SCOTT AC, 1973, P IEEE, V61, P1143
[9]  
STRAUSS WA, 1974, SCATTERING THEORY MA, P53
[10]  
VOLEVICH LR, 1965, RUSS MATH SURV, V20, P1