A SET OF STATIONARY NON-MAXWELLIAN DISTRIBUTIONS

被引:17
作者
KANIADAKIS, G
QUARATI, P
机构
[1] INFM, UNITA RIC TORINO, I-10129 TURIN, ITALY
[2] INFN, SEZ CAGLIARI, I-09127 CAGLIARI, ITALY
关键词
D O I
10.1016/0378-4371(93)90116-L
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a set of distribution functions, stationary solutions of a Fokker-Planck equation, the frictional and diffusion coefficients having been expanded in a polynomial series with positive coefficients. These distributions show tails depleted or increased with respect to the Maxwellian distribution, which can, in any case, be recovered if the coefficients of the expansion satisfy particular conditions. The stationary non-Maxwellian distributions derived in this paper can be used in the calculations of rates in many different fields of physics where problems still have to be solved.
引用
收藏
页码:677 / 690
页数:14
相关论文
共 24 条
[1]  
[Anonymous], 1984, SPRINGER SERIES SYNE
[2]   IMPLICATIONS OF THE GALLEX DETERMINATION OF THE SOLAR NEUTRINO FLUX [J].
ANSELMANN, P ;
HAMPEL, W ;
HEUSSER, G ;
KIKO, J ;
KIRSTEN, T ;
PERNICKA, E ;
PLAGA, R ;
RONN, U ;
SANN, M ;
SCHLOSSER, C ;
WINK, R ;
WOJCIK, M ;
VONAMMON, R ;
EBERT, KH ;
HENRICH, E ;
BALATA, M ;
BELLOTTI, E ;
FERRARI, N ;
LALLA, H ;
STOLARCZYK, T ;
CATTADORI, C ;
CREMONESI, O ;
FIORINI, E ;
PEZZONI, S ;
ZANOTTI, L ;
VONFEILITZSCH, F ;
MOSSBAUER, R ;
SCHANDA, U ;
BERTHOMIEU, G ;
SCHATZMAN, E ;
CARMI, I ;
DOSTROVSKY, I ;
BACCI, C ;
BELLI, P ;
BERNABEI, R ;
DANGELO, S ;
PAOLUZI, L ;
CHARBIT, S ;
CRIBIER, M ;
DUPONT, G ;
GOSSET, L ;
RICH, J ;
SPIRO, M ;
TAO, C ;
VIGNAUD, D ;
HAHN, RL ;
HARTMANN, FX ;
ROWLEY, JK ;
STOENNER, RW ;
WENESER, J .
PHYSICS LETTERS B, 1992, 285 (04) :390-397
[3]   SOLAR NEUTRINOS OBSERVED BY GALLEX AT GRAN SASSO [J].
ANSELMANN, P ;
HAMPEL, W ;
HEUSSER, G ;
KIKO, J ;
KIRSTEN, T ;
PERNICKA, E ;
PLAGA, R ;
RONN, U ;
SANN, M ;
SCHLOSSER, C ;
WINK, R ;
WOJCIK, M ;
VONAMMON, R ;
EBERT, KH ;
FRITSCH, T ;
HELLRIEGEL, K ;
HENRICH, E ;
STIEGLITZ, L ;
WEYRICH, F ;
BALATA, M ;
BELLOTTI, E ;
FERRARI, N ;
LALLA, H ;
STOLARCZYK, T ;
CATTADORI, C ;
CREMONESI, O ;
FIORINI, E ;
PEZZONI, S ;
ZANOTTI, L ;
VONFEILITZSCH, F ;
MOSSBAUER, R ;
SCHANDA, U ;
BERTHOMIEU, G ;
SCHATZMAN, E ;
CARMI, I ;
DOSTROVSKY, I ;
BACCI, C ;
BELLI, P ;
BERNABEI, R ;
DANGELO, S ;
PAOLUZI, L ;
CHARBIT, S ;
CRIBIER, M ;
DUPONT, G ;
GOSSET, L ;
RICH, J ;
SPIRO, M ;
TAO, C ;
VIGNAUD, D ;
HAHN, RL .
PHYSICS LETTERS B, 1992, 285 (04) :376-389
[4]   DIFFUSION IN A POTENTIAL-FIELD - PATH-INTEGRAL APPROACH [J].
BAIBUZ, VF ;
ZITSERMAN, VY ;
DROZDOV, AN .
PHYSICA A, 1984, 127 (1-2) :173-193
[5]  
Bell M., 1982, Particle Accelerators, V12, P49
[6]   SPECTRAL DENSITY FOR A NONLINEAR FOKKER-PLANCK MODEL - MONTE-CARLO AND ANALYTICAL STUDIES [J].
BREY, JJ ;
CASADO, JM ;
MORILLO, M .
PHYSICAL REVIEW A, 1985, 32 (05) :2893-2898
[7]  
CLAYTON DC, 1975, ASTROPHYS J, V199, P399
[8]   HIGH-ENERGY COMPONENTS AND COLLECTIVE MODES IN THERMONUCLEAR PLASMAS [J].
COPPI, B ;
COWLEY, S ;
KULSRUD, R ;
DETRAGIACHE, P ;
PEGORARO, F .
PHYSICS OF FLUIDS, 1986, 29 (12) :4060-4072
[9]   BROWNIAN DYNAMICS SIMULATIONS WITHOUT GAUSSIAN RANDOM NUMBERS [J].
Duenweg, Burkhard ;
Paul, Wolfgang .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1991, 2 (03) :817-827
[10]   NUMERICAL-ANALYSIS OF THE SMOLUCHOWSKI EQUATION USING THE SPLIT OPERATOR METHOD [J].
GOMEZORDONEZ, J ;
MORILLO, M .
PHYSICA A, 1992, 183 (04) :490-507