SHOCK-WAVES AND TIME SCALES TO REACH EQUIPARTITION IN THE FERMI-PASTA-ULAM MODEL

被引:30
作者
POGGI, P
RUFFO, S
KANTZ, H
机构
[1] UNIV FLORENCE,DIPARTIMENTO ENERGET,FLORENCE,ITALY
[2] IST NAZL FIS NUCL,SEZ FIRENZE,FLORENCE,ITALY
[3] INFM,UNITA FIRENZE,FLORENCE,ITALY
[4] MAX PLANCK INST PHYS KOMPLEXER SYST,D-01187 DRESDEN,GERMANY
[5] UNIV TOULOUSE 3,PHYS QUANT LAB,F-31062 TOULOUSE,FRANCE
[6] CNRS,URA 505,TOULOUSE,FRANCE
来源
PHYSICAL REVIEW E | 1995年 / 52卷 / 01期
关键词
D O I
10.1103/PhysRevE.52.307
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In a specific continuum limit at intermediate energy, the Fermi-Pasta-Ulam (FPU)-beta chain can be described by a nonlinear partial differential equation, whose solutions are shock waves. Proper long-wavelength initial conditions of the discrete model show a time evolution in numerical simulations that agrees with the solution of the continuum model where it is single valued. The breakdown times for the occurrence of the shock, when starting from a smooth initial condition, are shown to be relevant time scales for the transition to equipartition of energy, by an analysis of the time evolution of the spectral entropy. A simple time scale t(B) similar to N-2/(beta kE) is derived in the continuum limit for mode k initial excitations with energy E and N particles. This time scale is tested numerically in the FPU chain.
引用
收藏
页码:307 / 315
页数:9
相关论文
共 24 条
[1]  
Livi R., Pettini M., Ruffo S., Sparpaglione M., Vulpiani A., Phys. Rev. A, 31, (1985)
[2]  
Livi R., Pettini M., Ruffo S., Vulpiani A., Phys. Rev. A, 31, (1985)
[3]  
De Luca J., Lichtenberg A.J., Ruffo S., Energy transitions and time scales to equipartition in the Fermi-Pasta-Ulam oscillator chain, Physical Review E, 51, (1995)
[4]  
Shepelyansky D.L.
[5]  
Kantz H., Livi R., Ruffo S., J. Stat. Phys., 76, (1994)
[6]  
Galgani L., Giorgilli A., Martinoli A., Vanzini S., Physica D, 59, (1992)
[7]  
Adv. Math., 9, (1972)
[8]  
Zabusky N.J., Proceedings of the Conference on Mathematical Models in the Physical Sciences, (1963)
[9]  
Zabusky N.J., Kruskal M.D., Phys. Rev. Lett., 15, (1965)
[10]  
Toda M., Phys. Rep., 18, (1975)