HIGH-ORDER SPLITTING METHODS FOR THE INCOMPRESSIBLE NAVIER STOKES EQUATIONS

被引:1058
作者
KARNIADAKIS, GE [1 ]
ISRAELI, M [1 ]
ORSZAG, SA [1 ]
机构
[1] TECHNION ISRAEL INST TECHNOL,DEPT COMP SCI,HAIFA,ISRAEL
基金
美国国家科学基金会;
关键词
D O I
10.1016/0021-9991(91)90007-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new pressure formulation for splitting methods is developed that results in high-order time-accurate schemes for the solution of the incompressible Navier-Stokes equations. In particular, improved pressure boundary conditions of high order in time are introduced that minimize the effect of erroneous numerical boundary layers induced by splitting methods. A new family of stiffly stable schemes is employed in mixed explicit/implicit time-intgration rules. These schemes exhibit much broader stability regions as compared to Adams-family schemes, typically used in splitting methods. Their stability properties remain almost constant as the accuracy of the integration increases, so that robust third- or higher-order time-accurate schemes can readily be constructed that remain stable at relatively large CFL number. The new schemes are implemented within the framework of spectral element discretizations in space so that flexibility and accuracy is guaranteed in the numerical experimentation. A model Stokes problem is studied in detail, and several examples of Navier-Stokes solutions of flows in complex geometries are reported. Comparison is made with the previously used first-order in time spectral element splitting and non-splitting (e.g., Uzawa) schemes. High-order splitting/spectral element methods combine accuracy in space and time, and flexibility in geometry, and thus can be very efficient in direct simulations of turbulent flows in complex geometries. © 1991.
引用
收藏
页码:414 / 443
页数:30
相关论文
共 23 条
[1]   FINITE-ELEMENT CALCULATION OF VISCOELASTIC FLOW IN A JOURNAL BEARING .1. SMALL ECCENTRICITIES [J].
BERIS, AN ;
ARMSTRONG, RC ;
BROWN, RA .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1984, 16 (1-2) :141-172
[2]  
Canuto C., 1987, SPECTRAL METHODS FLU
[3]   PRESSURE AND TIME TREATMENT FOR TSCHEBYSCHEFF SPECTRAL SOLUTION OF A STOKES PROBLEM [J].
DEVILLE, M ;
KLEISER, L ;
MONTIGNYRANNOU, F .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1984, 4 (12) :1149-1163
[4]  
Gear CW, 1973, NUMERICAL INITIAL VA
[5]   ON PRESSURE BOUNDARY-CONDITIONS FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
GRESHO, PM ;
SANI, RL .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1987, 7 (10) :1111-1145
[6]  
JAIN MK, 1970, 394 U ILL TECHN REP
[7]   FREQUENCY SELECTION AND ASYMPTOTIC STATES IN LAMINAR WAKES [J].
KARNIADAKIS, GE ;
TRIANTAFYLLOU, GS .
JOURNAL OF FLUID MECHANICS, 1989, 199 :441-469
[8]   SPECTRAL ELEMENT SIMULATIONS OF LAMINAR AND TURBULENT FLOWS IN COMPLEX GEOMETRIES [J].
KARNIADAKIS, GE .
APPLIED NUMERICAL MATHEMATICS, 1989, 6 (1-2) :85-105
[9]   MINIMUM-DISSIPATION TRANSPORT ENHANCEMENT BY FLOW DESTABILIZATION - REYNOLDS ANALOGY REVISITED [J].
KARNIADAKIS, GE ;
MIKIC, BB ;
PATERA, AT .
JOURNAL OF FLUID MECHANICS, 1988, 192 :365-391
[10]  
KARNIADAKIS GE, 1985, FINITE ELEMENT METHO, P803