ANOMALOUS DIFFUSION IN THE KURAMOTO-SIVASHINSKY EQUATION

被引:34
作者
BOHR, T
PIKOVSKY, A
机构
[1] UNIV POTSDAM,ARBEITSGRP NICHTLINEARE DYNAM,O-1571 POTSDAM,GERMANY
[2] UNIV CALIF SANTA BARBARA,INST THEORET PHYS,SANTA BARBARA,CA 93106
关键词
D O I
10.1103/PhysRevLett.70.2892
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the motion of advected particles in the Kuramoto-Sivashinsky equation. We give numerical evidence as well as analytical arguments for anomalous diffusion in which the particle displacement DELTAr satisfies [[DELTAr(t)]2] is similar to t(eta) where eta > 1. We show that if the flow is initially seeded with many particles, they will coalesce in time and that a passive scalar density tends to an asymptotic (time dependent) distribution, which, for given initial conditions on the velocity field, is independent of the initial distribution of the passive scalar.
引用
收藏
页码:2892 / 2895
页数:4
相关论文
共 36 条
[1]  
Afanasiev Valerii V., 1991, Chaos, V1, P143, DOI 10.1063/1.165824
[2]   RENORMALIZATION THEORY FOR EDDY DIFFUSIVITY IN TURBULENT TRANSPORT [J].
AVELLANEDA, M ;
MAJDA, AJ .
PHYSICAL REVIEW LETTERS, 1992, 68 (20) :3028-3031
[3]   DYNAMIC SCALING OF COUPLED NONEQUILIBRIUM INTERFACES [J].
BARABASI, AL .
PHYSICAL REVIEW A, 1992, 46 (06) :R2977-R2980
[4]   ANOMALOUS DIFFUSION IN A LINEAR-ARRAY OF VORTICES [J].
CARDOSO, O ;
TABELING, P .
EUROPHYSICS LETTERS, 1988, 7 (03) :225-230
[5]   ANOMALOUS TRANSPORT OF STREAMLINES DUE TO THEIR CHAOS AND THEIR SPATIAL TOPOLOGY [J].
CHERNIKOV, AA ;
PETROVICHEV, BA ;
ROGALSKY, AV ;
SAGDEEV, RZ ;
ZASLAVSKY, GM .
PHYSICS LETTERS A, 1990, 144 (03) :127-133
[6]  
de Josselin de Jong G., 1958, T AM GEOPHYS UNION, V39, P67, DOI DOI 10.1029/TR039I001P00067
[7]   THE SURFACE STATISTICS OF A GRANULAR AGGREGATE [J].
EDWARDS, SF ;
WILKINSON, DR .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 381 (1780) :17-31
[8]  
Feder J., 1988, FRACTALS
[9]   LARGE-DISTANCE AND LONG-TIME PROPERTIES OF A RANDOMLY STIRRED FLUID [J].
FORSTER, D ;
NELSON, DR ;
STEPHEN, MJ .
PHYSICAL REVIEW A, 1977, 16 (02) :732-749
[10]   INTERMITTENT DIFFUSION - A CHAOTIC SCENARIO IN UNBOUNDED SYSTEMS [J].
GEISEL, T ;
NIERWETBERG, J .
PHYSICAL REVIEW A, 1984, 29 (04) :2305-2308