THE DEBYE SYSTEM - EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS

被引:225
作者
BILER, P
HEBISCH, W
NADZIEJA, T
机构
[1] Mathematical Institute, University of Wroclaw, 50-384 Wroclaw
关键词
PARABOLIC-ELLIPTIC SYSTEM; NONLINEAR BOUNDARY CONDITIONS; EXISTENCE OF SOLUTIONS; ASYMPTOTIC BEHAVIOR;
D O I
10.1016/0362-546X(94)90101-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:1189 / 1209
页数:21
相关论文
共 16 条
[1]  
Adams RA., 2003, PURE APPL MATH SOB O, V2
[3]  
BILER P, IN PRESS C MATH
[4]  
DAUTRAY R, 1990, MATH ANAL NUMERICAL, V1
[5]  
Debye P, 1923, PHYS Z, V24, P305
[6]   BOUNDARY ASYMPTOTICS FOR SOLUTIONS OF THE POISSON-BOLTZMANN EQUATION [J].
FRIEDMAN, A ;
TINTAREV, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 69 (01) :15-38
[7]   ON EXISTENCE, UNIQUENESS AND ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF THE BASIC EQUATIONS FOR CARRIER TRANSPORT IN SEMICONDUCTORS [J].
GAJEWSKI, H .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1985, 65 (02) :101-108
[8]   ON THE BASIC EQUATIONS FOR CARRIER TRANSPORT IN SEMICONDUCTORS [J].
GAJEWSKI, H ;
GROGER, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 113 (01) :12-35
[9]   A NONSTATIONARY PROBLEM IN THE THEORY OF ELECTROLYTES [J].
KRZYWICKI, A ;
NADZIEJA, T .
QUARTERLY OF APPLIED MATHEMATICS, 1992, 50 (01) :105-107
[10]  
KRZYWICKI A, 1991, ANN POL MATH, V54, P125