ANALYSIS OF THE GENERALIZED STUECKELBERG METHOD OF NON-ADIABATIC TRANSITIONS

被引:9
作者
BANDRAUK, AD [1 ]
MILLER, WH [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT CHEM,BERKELEY,CA 94720
基金
美国国家科学基金会;
关键词
D O I
10.1080/00268977900102931
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The generalized Stueckelberg model of non-adiabatic transitions is applied to the linear curve crossing problem. It is shown that the theory can be analytically continued for all energies, thus reproducing the adiabatic asymptotic formulae derived by the Nikitin school for the Landau-Zener model. Comparisons are made with exact numerical calculations and excellent agreement is obtained in the adiabatic regime. The method is less accurate for low energies in the intermediate non-adiabatic coupling region. © 1979 Taylor & Francis Ltd.
引用
收藏
页码:1893 / 1907
页数:15
相关论文
共 36 条
[1]  
Abramowitz M, 1965, HDB MATH TABLES
[2]  
[Anonymous], 1932, HELV PHYS ACTA, DOI DOI 10.5169/SEALS-110177
[3]   ANALYTIC PREDISSOCIATION LINEWIDTHS FROM SCATTERING THEORY [J].
BANDRAUK, AD ;
CHILD, MS .
MOLECULAR PHYSICS, 1970, 19 (01) :95-&
[4]  
BYKHOVSKII VK, 1965, SOV PHYS JETP-USSR, V20, P500
[5]   STUECKELBERG FORMULA FOR NON-ADIABATIC TRANSITIONS [J].
CHILD, MS .
MOLECULAR PHYSICS, 1974, 28 (02) :495-501
[6]   CRITIQUE OF ZWAAN-STUECKELBERG PHASE INTEGRAL TECHNIQUES [J].
CROTHERS, DS .
ADVANCES IN PHYSICS, 1971, 20 (86) :405-&
[7]   NONADIABATIC TRANSITIONS INDUCED BY A TIME-DEPENDENT HAMILTONIAN IN SEMICLASSICAL ADIABATIC LIMIT - 2-STATE CASE [J].
DAVIS, JP ;
PECHUKAS, P .
JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (08) :3129-3138
[8]   STUDIES OF POTENTIAL-CURVE-CROSSING PROBLEM .2. GENERAL THEORY AND A MODEL FOR CLOSE CROSSINGS [J].
DELOS, JB ;
THORSON, WR .
PHYSICAL REVIEW A, 1972, 6 (02) :728-&
[9]   2-CHANNEL S-MATRIX IN QUASI-CLASSICAL APPROXIMATION [J].
DUBROVSK.GV ;
FISCHERH.I .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1974, 7 (08) :892-910
[10]  
DUBROVSKII GV, 1964, SOV PHYS JETP-USSR, V19, P591