OPTIMAL ERROR ANALYSIS OF SPECTRAL METHODS WITH EMPHASIS ON NONCONSTANT COEFFICIENTS AND DEFORMED GEOMETRIES

被引:78
作者
MADAY, Y [1 ]
RONQUIST, EM [1 ]
机构
[1] MIT,DEPT MECH ENGN,CAMBRIDGE,MA 02139
基金
美国国家科学基金会;
关键词
D O I
10.1016/0045-7825(90)90016-F
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we present the numerical analysis of spectral methods when non-constant coefficients appear in the equation, either due to the original statement of the equations or to take into account the deformed geometry. A particular attention is devoted to the optimality of the discretization even for low values of the discretization parameter. The effect of some 'overintegration' is also addressed, in order to possibly improve the accuracy of the discretization. © 1990.
引用
收藏
页码:91 / 115
页数:25
相关论文
共 18 条
  • [1] BERNARDI C, 1989, NONLINEAR PARTIAL DI
  • [2] BERNARDI C, 1989, J APPL NUMER METHODS, V6, P33
  • [3] THE SCHWARZ ALGORITHM FOR SPECTRAL METHODS
    CANUTO, C
    FUNARO, D
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (01) : 24 - 40
  • [4] CANUTO C, 1982, MATH COMPUT, V38, P67, DOI 10.1090/S0025-5718-1982-0637287-3
  • [5] CIARLET PG, 1970, MATH F FINITE ELEMEN, P409
  • [6] Funaro D, 1986, NUMER METH PART DIFF, V2, P187
  • [7] GOTTLIEB D, 1981, MATH COMPUT, V36, P107, DOI 10.1090/S0025-5718-1981-0595045-1
  • [8] MADAY Y, 1982, RAIRO-ANAL NUMER-NUM, V16, P375
  • [9] Maday Y., 1989, STATE OF THE ART SUR, P71
  • [10] MADAY Y, 1988, 7TH P INT C DOM DEC