We report here the properties of a new family of resins possessing an amphoteric character and able to strongly buffer at their pI values. They have been adopted as carriers for growth of cells in tissue culture and for hydroponics (Righetti et al. 1991; J. Biotechnol. 17, 169-176) but it is to be expected that such resins could have interesting chromatographic applications. It has been found that such beads [made by incorporating a pK 6.2 weak acrylamido base and a pK 4.6 weak acrylamido acid in a 2:1 ratio (thus with a pI of 6.2) into a neutral polyacrylamide backbone], independently from their initial conditioning (acid- or base-washed), spontaneously seek their equilibrium position (pI value) upon washing off excess titrant. Thus, upon potentiometric titration, they are seen to buffer in both directions of the pH scale (contrary to the behaviour of a pure carboxyl or a pure amino surface, which will exhibit only unidirectional buffering power). From the behaviour of these amphoteric beads when polymerized in the absence or in the presence of salts (0.2 M NaCl), it is hypothesized that, for exerting buffering power, both the buffering ion and its counterion must be incorporated non-randomly in the chain, but as a couple or in close proximity. Upon random incorporation of the two ions, buffering power is lost.