ASYMPTOTIC ENUMERATION BY DEGREE SEQUENCE OF GRAPHS OF HIGH DEGREE

被引:90
作者
MCKAY, BD
WORMALD, NC
机构
[1] UNIV AUCKLAND,DEPT MATH & STAT,AUCKLAND,NEW ZEALAND
[2] AUSTRALIAN NATL UNIV,DEPT COMP SCI,CANBERRA,ACT 2601,AUSTRALIA
关键词
D O I
10.1016/S0195-6698(13)80042-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the estimation of the number of labelled simple graphs with degree sequence d1, d2, . . . , dn by using an n-dimensional Cauchy integral. For sufficiently small ε and any c 〉 2/3, an asymptotic formula is obtained when |di − d| < n1/2 + ε for all i and d = d(ni) satisfies min{d, n − d − 1) ⩾ cn/log n as n→ ∞. These conditions include the degree sequences of almost all graphs, so our result gives as a corollary the asymptotic joint distribution function of the degrees of a random graph. We also give evidence for a formula conjectured to be valid for all d(n). © 1990, Academic Press Limited. All rights reserved.
引用
收藏
页码:565 / 580
页数:16
相关论文
共 25 条
[1]   ASYMPTOTIC NUMBER OF LABELED GRAPHS WITH GIVEN DEGREE SEQUENCES [J].
BENDER, EA ;
CANFIELD, ER .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 24 (03) :296-307
[2]   THE INDEPENDENCE RATIO OF REGULAR GRAPHS [J].
BOLLOBAS, B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 83 (02) :433-436
[3]   THE NUMBER OF MATCHINGS IN RANDOM REGULAR GRAPHS AND BIPARTITE GRAPHS [J].
BOLLOBAS, B ;
MCKAY, BD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 41 (01) :80-91
[4]  
BOLLOBAS B, 1982, J LOND MATH SOC, V26, P201
[5]  
Bollobas B, 1980, EUR J COMBINAT, V1, P311
[6]   HAMILTONIAN CYCLES IN RANDOM REGULAR GRAPHS [J].
FENNER, TI ;
FRIEZE, AM .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1984, 37 (02) :103-112
[7]  
JERRUM M, CSR28188 U ED DEP CO
[8]  
McKay B. D., 1981, C NUMER, V33, P213
[9]  
McKay B.D, 1984, ENUMERATION DESIGN, P225
[10]  
MCKAY B. D., 1983, C NUMERANTIUM, V40, P207