CYCLIC HOMOLOGY OF DIFFERENTIAL-OPERATORS, THE VIRASORO ALGEBRA AND A Q-ANALOG

被引:56
作者
KASSEL, C
机构
[1] Institut de Recherche Mathématique Avancée, Université Louis Pasteur-C.N.R.S., Strasbourg, F-67084
关键词
D O I
10.1007/BF02102632
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show how methods from cyclic homology give easily an explicit 2-cocycle-phi on the Lie algebra of differential operators of the circle such that phi-restricts to the cocycle defining the Virasoro algebra. The same methods yield also a q-analogue of phi as well as an infinite family of linearly independent cocycles arising when the complex parameter q is a root of unity. We use an algebra of q-difference operators and q-analogues of Koszul and de Rham complexes to construct these "quantum" cocycles.
引用
收藏
页码:343 / 356
页数:14
相关论文
共 8 条
[1]   DETERMINANT BUNDLES AND VIRASORO ALGEBRAS [J].
BEILINSON, AA ;
SCHECHTMAN, VV .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (04) :651-701
[2]  
Bourbaki N., 1980, ALGEBRE HOMOLOGIQUE
[3]  
BRYLINSKI JL, 1987, LECT NOTES MATH, V1271, P33
[4]  
BRYLINSKI JL, 1987, K-THEORY, V1, P385
[5]   CYCLIC HOMOLOGY AND THE BEILINSON-MANIN-SCHECHTMAN CENTRAL EXTENSION [J].
GETZLER, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 104 (03) :729-734
[6]   SPIN AND WEDGE REPRESENTATIONS OF INFINITE-DIMENSIONAL LIE-ALGEBRAS AND GROUPS - (CLIFFORD ALGEBRA-SPIN REPRESENTATION-AFFINE KAC-MOODY LIE ALGEBRA-HIGHEST WEIGHT REPRESENTATION-LINE BUNDLE) [J].
KAC, VG ;
PETERSON, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1981, 78 (06) :3308-3312
[7]   NONCOMMUTATIVE HOMOLOGY OF QUANTUM TORI [J].
TAKHTADZHYAN, LA .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1989, 23 (02) :147-149
[8]   CYCLIC HOMOLOGY OF DIFFERENTIAL-OPERATORS [J].
WODZICKI, M .
DUKE MATHEMATICAL JOURNAL, 1987, 54 (02) :641-647