Edge-Skeletons in Arrangements with Applications

被引:27
作者
Edelsbrunner, H. [1 ]
机构
[1] Graz Tech Univ, Inst Informat Proc, A-8010 Graz, Austria
关键词
Arrangements of planes; Power diagrams; Computational geometry; Asymptotic complexity; Dynamic data structures; Perturbation;
D O I
10.1007/BF01840438
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
An edge-skeleton in an arrangement A(H) of a finite set of planes in E(3) is a connected collection of edges in A(H). We give a method that constructs a skeleton in O(root n log n) time per edge. This method implies new and more efficient algorithms for a number of structures in computational geometry including order-k power diagrams in E(2) and space cutting trees in E(3). We also give a novel method for handling special cases which has the potential to substantially decrease the amount of effort needed to implement geometric algorithms.
引用
收藏
页码:93 / 109
页数:17
相关论文
共 24 条
[1]  
Aho A. V., 1974, DESIGN ANAL COMPUTER, V1st
[2]  
ALEXANDERSON GL, 1978, MATH MAG, V51, P220
[3]  
AURENHAMMER F, 1983, F120 TU I GRAZ INF P
[4]  
CHAZELLE BM, J DISCRETE IN PRESS
[5]  
Cole R., 1984, P 16 ANN ACM S THEOR, P154
[6]  
DOBKIN DP, 1984, P 25 ANN IEEE S FDN, P387
[7]  
EDELSBRUNNER EH, 1985, INFORM PROCESS LETT, V21, P39
[8]   ON THE NUMBER OF LINE SEPARATIONS OF A FINITE-SET IN THE PLANE [J].
EDELSBRUNNER, H ;
WELZL, E .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1985, 38 (01) :15-29
[9]  
EDELSBRUNNER H, 1984, F142 TU GRAZ I INF P
[10]  
EDELSBRUNNER H, 1984, F138 TU GRAZ I INF P