MEAN-VALUE INEQUALITIES IN HILBERT-SPACE

被引:65
作者
CLARKE, FH [1 ]
LEDYAEV, YS [1 ]
机构
[1] VA STEKLOV MATH INST,MOSCOW 117966,RUSSIA
关键词
MEAN VALUE THEOREM; NONSMOOTH ANALYSIS; FLOW INVARIANCE; MONOTONE FUNCTIONS; GENERALIZED SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS;
D O I
10.2307/2154718
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a new mean value theorem applicable to lower semicontinuous functions on Hilbert space. A novel feature of the result is its ''multidirectionality'': it compares the value of a function at a point to its values on a set. We then discuss some refinements and consequences of the theorem, including applications to calculus, flow invariance, and generalized solutions to partial differential equations.
引用
收藏
页码:307 / 324
页数:18
相关论文
共 11 条
[1]   A SMOOTH VARIATIONAL PRINCIPLE WITH APPLICATIONS TO SUBDIFFERENTIABILITY AND TO DIFFERENTIABILITY OF CONVEX-FUNCTIONS [J].
BORWEIN, JM ;
PREISS, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 303 (02) :517-527
[2]   SUBGRADIENT CRITERIA FOR MONOTONICITY, THE LIPSCHITZ CONDITION, AND CONVEXITY [J].
CLARKE, FH ;
STERN, RJ ;
WOLENSKI, PR .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (06) :1167-1183
[3]  
CLARKE FH, 1989, APPL MATH, V57
[4]  
CLARKE FH, IN PRESS P AM MATH S
[5]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[6]  
Guseinov H. G., 1985, Problems of Control and Information Theory, V14, P155
[7]  
LOEWEN PD, 1993, CRM P LECTURE NOTES, V2
[8]  
SUBBOTIN A, 1991, MAT SBORNIK, P1315
[9]  
SUBBOTIN AI, VIABLE CHARACTERISTI
[10]  
SUBBOTIN AI, 1992, DOKL AKAD NAUK SSSR, V323