BOSONIZATION IN 2+1 DIMENSIONS WITHOUT A CHERN-SIMONS TERM

被引:11
作者
KOVNER, A
KURZEPA, PS
机构
关键词
D O I
10.1016/0370-2693(94)90338-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We perform the complete bosonization of 2+1 dimensional QED with one fermionic flavor in the Hamiltonian formalism. The fermion operators are explicitly constructed in terms of the vector potential and the electric field. We carefully specify the regularization procedure involved in the definition of these operators, and calculate the fermionic bilinears and the energy-momentum tenser. The algebra of bilinears exhibits the Schwinger terms which also appear in perturbation theory. The bosonic Hamiltonian density is a local polynomial function of A(i) and E(i), and we check explicitly the Lorentz invariance of the resulting bosonic theory. Our construction is conceptually very similar to Mandelstam's construction in 1+1 dimensions, and is dissimilar from the recent bosonization attempts in 2+1 dimensions which hinge crucially on the existence of a Chern-Simons term.
引用
收藏
页码:129 / 136
页数:8
相关论文
共 27 条
[1]   ON THE REALIZATION OF CHIRAL SYMMETRY IN (1 + 1) DIMENSIONS [J].
AFFLECK, I .
NUCLEAR PHYSICS B, 1986, 265 (03) :448-468
[2]   FERMIONS FROM BOSONS IN 2 + 1 DIMENSIONS [J].
ARATYN, H .
PHYSICAL REVIEW D, 1983, 28 (08) :2016-2018
[3]   A BOSE REPRESENTATION FOR THE MASSLESS DIRAC FIELD IN 4 DIMENSIONS [J].
ARATYN, H .
NUCLEAR PHYSICS B, 1983, 227 (01) :172-188
[4]   QUANTUM SINE-GORDON EQUATION AS MASSIVE THIRRING MODEL [J].
COLEMAN, S .
PHYSICAL REVIEW D, 1975, 11 (08) :2088-2097
[5]   PARITY ANOMALY AND FERMION-BOSON TRANSMUTATION IN 3-DIMENSIONAL LATTICE QED [J].
COSTE, A ;
LUSCHER, M .
NUCLEAR PHYSICS B, 1989, 323 (03) :631-659
[6]   TOPOLOGICALLY MASSIVE GAUGE-THEORIES [J].
DESER, S ;
JACKIW, R ;
TEMPLETON, S .
ANNALS OF PHYSICS, 1982, 140 (02) :372-411
[7]   FERMION REPRESENTATION FOR THE Z2 LATTICE GAUGE-THEORY IN 2+1 DIMENSIONS [J].
FRADKIN, E ;
SREDNICKI, M ;
SUSSKIND, L .
PHYSICAL REVIEW D, 1980, 21 (10) :2885-2891
[8]  
FRADKIN E, 1989, PHYS REV LETT, V63, P32
[9]  
Fradkin E.H., 1991, FIELD THEORIES CONDE
[10]   SPIN, STATISTICS, AND GEOMETRY OF RANDOM-WALKS [J].
JAROSZEWICZ, T ;
KURZEPA, PS .
ANNALS OF PHYSICS, 1991, 210 (02) :255-322