THE SCALING OF ARNOLD TONGUES FOR DIFFERENTIABLE HOMEOMORPHISMS OF THE CIRCLE

被引:16
作者
JONKER, LB
机构
[1] Department of Mathematics and Statistics, Queen's University, Kingston, K7L 3N6, Ontario
关键词
D O I
10.1007/BF02096776
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show both for diffeomorphisms of the circle and for differentiable homeomorphisms that are not diffeomorphisms, that the widths of the Arnol'd tongues in a one parameter family scale as q-3 when q is the denominator of the rotation number. © 1990 Springer-Verlag.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 11 条
[2]  
Arnold VI., 1965, AM MATH SOC TRANSL, V46, P213, DOI [10.1090/trans2/046/11, DOI 10.1090/TRANS2/046/11]
[3]   SCALING LAWS FOR MODE LOCKINGS IN CIRCLE MAPS [J].
CVITANOVIC, P ;
SHRAIMAN, B ;
SODERBERG, B .
PHYSICA SCRIPTA, 1985, 32 (04) :263-270
[4]   Scaling of the Arnold tongues [J].
Ecke, Robert E. ;
Farmer, J. Doyne ;
Umberger, David K. .
NONLINEARITY, 1989, 2 (02) :175-196
[5]  
GRACZYK J, HARMONIC SCALING SMO
[6]  
Herman M, 1977, LECT NOTES MATH, V597, P271
[7]   COMPLETE DEVILS STAIRCASE, FRACTAL DIMENSION, AND UNIVERSALITY OF MODE-LOCKING STRUCTURE IN THE CIRCLE MAP [J].
JENSEN, MH ;
BAK, P ;
BOHR, T .
PHYSICAL REVIEW LETTERS, 1983, 50 (21) :1637-1639
[8]   UNIVERSAL PROPERTIES OF MAPS OF THE CIRCLE WITH EPSILON-SINGULARITIES [J].
JONKER, L ;
RAND, DA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 90 (02) :273-292
[9]  
POINCARE H, 1952, OEUVRES COMPLETES, V1
[10]   UNIVERSAL TRANSITION FROM QUASI-PERIODICITY TO CHAOS IN DISSIPATIVE SYSTEMS [J].
RAND, D ;
OSTLUND, S ;
SETHNA, J ;
SIGGIA, ED .
PHYSICAL REVIEW LETTERS, 1982, 49 (02) :132-135