WHEN DOES THE QUASI-LINEAR THEORY WORK

被引:13
作者
KORNIENKO, AG
NATENZON, MY
SAGDEEV, RZ
ZASLAVSKY, GM
机构
[1] UNIV MARYLAND,COLLEGE PK,MD 20742
[2] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
关键词
D O I
10.1016/0375-9601(91)90681-W
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The natural mapping and wavelet analysis are applied to study particle motion in a wave packet with a finite number of harmonics. It is shown that particle trapping in an area in the vicinity of islands produces a quasi-singular behaviour of the time process data for the particle's position and velocity, which can be verified by the wavelet analysis. Just such "clamps" have influence on the anomalous transport of particles.
引用
收藏
页码:398 / 406
页数:9
相关论文
共 27 条
[1]   WAVELET ANALYSIS OF TURBULENCE REVEALS THE MULTIFRACTAL NATURE OF THE RICHARDSON CASCADE [J].
ARGOUL, F ;
ARNEODO, A ;
GRASSEAU, G ;
GAGNE, Y ;
HOPFINGER, EJ ;
FRISCH, U .
NATURE, 1989, 338 (6210) :51-53
[2]  
ARNEODO A, 1988, PHYS REV LETT, V61, P2287
[3]  
BERZIN AA, 1987, FIZ PLAZMY, V13, P592
[4]   STATISTICAL CHARACTERIZATION OF PERIODIC, AREA-PRESERVING MAPPINGS [J].
CARY, JR ;
MEISS, JD ;
BHATTACHARJEE, A .
PHYSICAL REVIEW A, 1981, 23 (05) :2744-2746
[5]   HAMILTONIAN TRANSPORT ON UNSTABLE PERIODIC-ORBITS [J].
DANA, I .
PHYSICA D, 1989, 39 (2-3) :205-230
[6]   RESONANCES AND DIFFUSION IN PERIODIC HAMILTONIAN MAPS [J].
DANA, I ;
MURRAY, NW ;
PERCIVAL, IC .
PHYSICAL REVIEW LETTERS, 1989, 62 (03) :233-236
[7]  
DRUMMOND WE, 1962, NUCL FUSION, P1049
[8]   A PERTURBATION THEORY FOR STRONG PLASMA TURBULENCE [J].
DUPREE, TH .
PHYSICS OF FLUIDS, 1966, 9 (09) :1773-&
[9]   WAVELET ANALYSIS OF THE TURBULENT JET [J].
EVERSON, R ;
SIROVICH, L ;
SREENIVASAN, KR .
PHYSICS LETTERS A, 1990, 145 (6-7) :314-322
[10]   DESTRUCTION OF MAGNETIC SURFACES BY MAGNETIC FIELD IRREGULARITIES .2. [J].
FILONENK.NN ;
SAGDEEV, RZ ;
ZASLAVSK.GM .
NUCLEAR FUSION, 1967, 7 (04) :253-&