A LINEAR TIME ALGORITHM FOR THE MAXIMUM CAPACITY PATH PROBLEM

被引:41
作者
PUNNEN, AP [1 ]
机构
[1] INDIAN INST TECHNOL,DEPT MATH,KANPUR 208016,UTTAR PRADESH,INDIA
关键词
NETWORKS; SHORTEST PATHS; MAXMIN PATHS; LINEAR TIME ALGORITHM; COMPUTATIONAL COMPLEXITY;
D O I
10.1016/0377-2217(91)90073-5
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
The maximum capacity path problem is to find a path joining two fixed vertices of an edge weighted graph such that the minimum edge weight is maximized. The best known algorithm to solve this problem has a worst-case complexity of O(min{m + n log n, m log(n)W}), where m is the number of edges, n is the number of vertices and W is the maximum edge capacity. We give a simple O(m) algorithm to solve this problem. As a by-product of this result, we have an O(m2) algorithm for a bicriteria path problem which is an improvement over the available O(m2log n) algorithm.
引用
收藏
页码:402 / 404
页数:3
相关论文
共 12 条
[1]  
Aho A. V., 1974, DESIGN ANAL COMPUTER, V1st
[2]  
Ahuja R.K., 1988, NETWORK FLOWS
[3]  
AHUJA RK, 1988, MIT193 OP RES CTR TE
[4]   OPTIMAL MINIMAX PATH OF A SINGLE SERVICE UNIT ON A NETWORK TO NONSERVICE DESTINATIONS [J].
BERMAN, O ;
HANDLER, GY .
TRANSPORTATION SCIENCE, 1987, 21 (02) :115-122
[5]   MIN-MAX SPANNING TREE PROBLEM AND SOME EXTENSIONS [J].
CAMERINI, PM .
INFORMATION PROCESSING LETTERS, 1978, 7 (01) :10-14
[6]  
Dijkstra E. W., 1959, NUMER MATH, P269, DOI DOI 10.1007/BF01386390
[7]   FIBONACCI HEAPS AND THEIR USES IN IMPROVED NETWORK OPTIMIZATION ALGORITHMS [J].
FREDMAN, ML ;
TARJAN, RE .
JOURNAL OF THE ACM, 1987, 34 (03) :596-615
[8]   EFFICIENT ALGORITHMS FOR FINDING MINIMUM SPANNING-TREES IN UNDIRECTED AND DIRECTED-GRAPHS [J].
GABOW, HN ;
GALIL, Z ;
SPENCER, T ;
TARJAN, RE .
COMBINATORICA, 1986, 6 (02) :109-122
[9]  
GABOW HN, 1985, J COMPUT SYST SCI, V31, P148, DOI 10.1016/0022-0000(85)90039-X
[10]  
Hansen P., 1980, LECTURE NOTES EC MAT, P109, DOI DOI 10.1007/978-3-642-48782-8_9