VARIATIONAL PRINCIPLES FOR FIRST-ORDER WAVE FUNCTIONS

被引:20
作者
ROBINSON, PD
机构
来源
JOURNAL OF PHYSICS PART A GENERAL | 1969年 / 2卷 / 02期
关键词
D O I
10.1088/0305-4470/2/2/006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Complementary variational principles are developed for approximate solutions of the first-order Rayleigh- Schrodinger perturbation correction to the wave equation, yielding upper and lower bounds for the second-order energy correction. The upper bound is the same as Hylleraas's; the complementary lower bound is related to Temple's result for eigenvalues, and (unlike previous lower bounds) is shown to be unconditional. The analysis extends to cover the first-order Brillouin-Wigner correction. As a by-product of the theory it is shown how the Rayleigh-Ritz upper bound and the Temple lower bound for eigenvalues arise in a complementary manner.
引用
收藏
页码:193 / &
相关论文
共 13 条
[1]   COMPLEMENTARY VARIATIONAL PRINCIPLES IN PERTURBATION THEORY [J].
ARTHURS, AM ;
ROBINSON, PD .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1968, 303 (1475) :503-&
[2]  
BATES DR, 1961, QUANTUM THEORY ED, V1, pCH5
[3]   UPPER AND LOWER BOUNDS ON SECOND-ORDER ENERGY SUM [J].
GOODISMA.J .
JOURNAL OF CHEMICAL PHYSICS, 1967, 47 (08) :2707-&
[4]   The ground state of the two-electron problem of H(-), He, Li(+) ,Be (++) ao [J].
Hylleraas, Egil A. .
ZEITSCHRIFT FUR PHYSIK, 1930, 65 (3-4) :209-225
[5]   VARIATIONAL SOLUTIONS TO BRILLOUIN-WIGNER PERTUBATION DIFFERENTIAL EQUATIONS [J].
MEATH, WJ ;
HIRSCHFELDER, JO .
JOURNAL OF CHEMICAL PHYSICS, 1964, 41 (06) :1628-&
[6]  
Mikhlin S G, 1964, VARIATIONAL METHODS
[8]   UPPER AND LOWER BOUNDS FOR GROUND-STATE SECOND-ORDER PERTURBATION ENERGY [J].
PRAGER, S ;
HIRSCHFELDER, JO .
JOURNAL OF CHEMICAL PHYSICS, 1963, 39 (12) :3289-&
[9]  
SCHERR CW, 1966, PERTURBATION THEORY, P97
[10]   2 THEOREMS ON VARIATION PERTURBATION METHOD FOR EXCITED STATES OF STATIONARY QUANTUM SYSTEMS [J].
SHARMA, CS .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1967, 91 (571P) :50-&