EXTREMAL DISTANCE, HARMONIC MEASURE AND NUMERICAL CONFORMAL MAPPING

被引:5
作者
DELILLO, TK
PFALTZGRAFF, JA
机构
[1] WICHITA STATE UNIV,DEPT MATH & STAT,WICHITA,KS 67208
[2] UNIV N CAROLINA,DEPT MATH,CHAPEL HILL,NC 27514
关键词
NUMERICAL CONFORMAL MAPPING; CROWDING; EXTREMAL LENGTH; HARMONIC MEASURE;
D O I
10.1016/0377-0427(93)90289-N
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Estimates of extremal distance and harmonic measure are used to show how the geometric properties of a simply connected domain influence the boundary distortion of a conformal map from the unit disk to the domain. Numerical examples and remarks on the conditioning of numerical conformal mapping methods are included. A sharp estimate is given of the exponential ill-conditioning, known as the crowding phenomenon, which occurs for slender regions.
引用
收藏
页码:103 / 113
页数:11
相关论文
共 27 条
[1]  
Ahlfors L. V., 1973, CONFORMAL INVARIANTS
[2]   AHLFORS AND CONFORMAL INVARIANTS [J].
BAERNSTEIN, A .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1988, 13 (03) :289-312
[3]  
BUERLING A, 1989, COLLECTED WORKS, V1
[4]   A FORNBERG-LIKE CONFORMAL MAPPING METHOD FOR SLENDER REGIONS [J].
DELILLO, TK ;
ELCRAT, AR .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1993, 46 (1-2) :49-64
[5]   A COMPARISON OF SOME NUMERICAL CONFORMAL MAPPING METHODS FOR EXTERIOR REGIONS [J].
DELILLO, TK ;
ELCRAT, AR .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1991, 12 (02) :399-422
[6]  
DELILLO TK, 1990, APPL MATH LETT, V3, P25
[7]  
DELILLO TK, ACCURACY NUMERICAL C
[8]  
DUBINER M, 1981, THESIS MIT
[9]   DETERMINATION OF CONFORMAL MODE OF QUADRILATERALS BY DIFFERENCE METHODS [J].
GAIER, D .
NUMERISCHE MATHEMATIK, 1972, 19 (02) :179-&
[10]   NUMERICAL EXPERIMENTS WITH A METHOD OF SUCCESSIVE APPROXIMATION FOR CONFORMAL MAPPING [J].
GRASSMANN, E .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1979, 30 (06) :873-884