ON A CLASS OF DAMPED MOROZOV PRINCIPLES

被引:25
作者
KUNISCH, K
机构
[1] Institut für Mathematik, Technische Universität Graz, Graz, A-8010
关键词
NONLINEAR ILL-POSED INVERSE PROBLEMS; REGULARIZATION; PARAMETER ESTIMATION;
D O I
10.1007/BF02243810
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A class of damped Morozov principles is introduced to determine the regularization parameter for the least squares formulation of nonlinear illposed inverse problems. Their asymptotic behavior as the error level in the data converges to zero is studied and a numerical example is given which shows that a damped Morozov principle can be superior to the Morozov principle.
引用
收藏
页码:185 / 198
页数:14
相关论文
共 12 条
[1]  
BANKS H., 1989, ESTIMATION TECHNIQUE
[2]   OUTPUT LEAST-SQUARES STABILITY IN ELLIPTIC-SYSTEMS [J].
COLONIUS, F ;
KUNISCH, K .
APPLIED MATHEMATICS AND OPTIMIZATION, 1989, 19 (01) :33-63
[3]   CONVERGENCE-RATES FOR TIKHONOV REGULARISATION OF NON-LINEAR ILL-POSED PROBLEMS [J].
ENGL, HW ;
KUNISCH, K ;
NEUBAUER, A .
INVERSE PROBLEMS, 1989, 5 (04) :523-540
[4]  
Groetsch C. W., 1983, THEORY TIKHONOV REGU
[5]  
ITO K, IN PRESS J MATH ANAL
[6]  
KRAVARIS C, 1985, SIAM J CONTROL OPTIM, V23, P271
[7]  
KUNISCH K, 1989, P C MODELLING INVERS
[8]  
Morozov V. A., 1984, METHODS SOLVING INCO
[10]  
NEUBAUER A, IN PRESS NUM FUNCT A