ON A CLASS OF HOMOGENEOUS NONLINEAR SCHRODINGER-EQUATIONS

被引:40
作者
AUBERSON, G
SABATIER, PC
机构
[1] Laboratoire de Physique Mathématique et Théorique, URA-CNRS 768, Université de Montpellier II
关键词
D O I
10.1063/1.530840
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A class of homogeneous, norm conserving, nonlinear wave equations of the Schrodinger type is studied. It is shown that those equations which derive from a Lagrangian can be linearized, but have no regular confined solutions, whereas the equations which cannot be obtained from a local Lagrangian do admit such confined solutions. The latter however are unstable against small perturbations of the initial data.
引用
收藏
页码:4028 / 4041
页数:14
相关论文
共 12 条
[1]   NONLINEAR-WAVE MECHANICS [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
ANNALS OF PHYSICS, 1976, 100 (1-2) :62-93
[2]   A NEW CLASS OF NONLINEAR GENERALIZATIONS OF THE SCHRODINGER-EQUATION [J].
DODONOV, VV ;
MIZRAHI, SS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (23) :7163-7168
[3]   ON A GENERAL NONLINEAR SCHRODINGER-EQUATION ADMITTING DIFFUSION CURRENTS [J].
DOEBNER, HD ;
GOLDIN, GA .
PHYSICS LETTERS A, 1992, 162 (05) :397-401
[4]   STRUCTURAL ASPECTS OF STOCHASTIC MECHANICS AND STOCHASTIC FIELD-THEORY [J].
GUERRA, F .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1981, 77 (03) :263-312
[5]   SCHRODINGER SOLITONS AND KINKS BEHAVE LIKE NEWTONIAN PARTICLES [J].
HASSE, RW .
PHYSICAL REVIEW A, 1982, 25 (01) :583-584
[6]   SCHRODINGER-LANGEVIN EQUATION [J].
KOSTIN, MD .
JOURNAL OF CHEMICAL PHYSICS, 1972, 57 (09) :3589-&
[7]  
KOSTIN MD, 1978, CAN J PHYS, V56, P1372
[8]  
KOSTIN MD, 1978, CAN J PHYS, V56, P311
[9]   MODULATIONAL INSTABILITIES AND SOLITON-SOLUTIONS OF A GENERALIZED NONLINEAR SCHRODINGER-EQUATION [J].
MALOMED, BA ;
STENFLO, L .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (19) :L1149-L1153
[10]  
NATTERMANN P, 1993, I MATH PHYSICS