THE GROUP THEORETICAL STRUCTURE OF FERMION MANY-BODY SYSTEMS ARISING FROM THE CANONICAL ANTI-COMMUTATION RELATION .1. LIE-ALGEBRAS OF FERMION OPERATORS AND EXACT GENERATOR-COORDINATE REPRESENTATIONS OF STATE VECTORS

被引:52
作者
FUKUTOME, H
机构
来源
PROGRESS OF THEORETICAL PHYSICS | 1981年 / 65卷 / 03期
关键词
D O I
10.1143/PTP.65.809
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:809 / 827
页数:19
相关论文
共 21 条
[1]   SELF-CONSISTENT FIELD THEORY OF NUCLEAR SHAPES [J].
BARANGER, M .
PHYSICAL REVIEW, 1961, 122 (03) :992-&
[2]  
BOGOLIUBOV NN, 1959, SOVIET PHYS USPEKHI, V0002, P00236, DOI DOI 10.1070/PU1959V002N02ABEH003122
[3]  
Chevalley C., 1954, ALGEBRAIC THEORY SPI
[4]   THEORY OF UNRESTRICTED HARTREE-FOCK EQUATION AND ITS SOLUTIONS .1. [J].
FUKUTOME, H .
PROGRESS OF THEORETICAL PHYSICS, 1971, 45 (05) :1382-&
[5]   NEW TAMM-DANCOFF METHOD BASED ON THE SO(2N+1) REGULAR REPRESENTATION OF FERMION MANY-BODY SYSTEMS [J].
FUKUTOME, H .
PROGRESS OF THEORETICAL PHYSICS, 1978, 60 (06) :1624-1639
[6]   NEW FERMION MANY-BODY THEORY BASED ON SO(2N+1) LIE-ALGEBRA OF FERMION OPERATORS [J].
FUKUTOME, H ;
YAMAMURA, M ;
NISHIYAMA, S .
PROGRESS OF THEORETICAL PHYSICS, 1977, 57 (05) :1554-1571
[7]   SO(2N+1) REGULAR REPRESENTATION OF OPERATORS AND WAVE-FUNCTIONS OF FERMION MANY-BODY SYSTEMS [J].
FUKUTOME, H .
PROGRESS OF THEORETICAL PHYSICS, 1977, 58 (06) :1692-1708
[8]  
HILL DL, 1953, PHYS REV, V89, P1106
[9]   COLLECTIVE VIBRATIONS OF MANY-FERMION SYSTEM [J].
JANCOVICI, B ;
SCHIFF, DH .
NUCLEAR PHYSICS, 1964, 58 (04) :678-&
[10]   BOSON DESCRIPTION OF COLLECTIVE STATES .1. DERIVATION OF BOSON TRANSFORMATION FOR EVEN FERMION SYSTEMS [J].
JANSSEN, D ;
DONAU, F ;
FRAUENDORF, S ;
JOLOS, RV .
NUCLEAR PHYSICS A, 1971, A172 (01) :145-+