AN INFEASIBLE-INTERIOR-POINT ALGORITHM FOR LINEAR COMPLEMENTARITY-PROBLEMS

被引:75
作者
WRIGHT, SJ
机构
[1] Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, 60439, Illinois
关键词
INFEASIBLE-INTERIOR-POINT METHODS; LINEAR COMPLEMENTARITY PROBLEMS; Q-SUBQUADRATIC CONVERGENCE;
D O I
10.1007/BF01582211
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We modify the algorithm of Zhang to obtain an O(n2L) infeasible-interior-point algorithm for monotone linear complementarity problems that has an asymptotic Q-subquadratic convergence rate. The algorithm requires the solution of at most two linear systems with the same coefficient matrix at each iteration.
引用
收藏
页码:29 / 51
页数:23
相关论文
共 12 条
[1]  
JI J, 1991, 18 U IOW DEP MATH RE
[2]   A PRIMAL DUAL INFEASIBLE-INTERIOR-POINT ALGORITHM FOR LINEAR-PROGRAMMING [J].
KOJIMA, M ;
MEGIDDO, N ;
MIZUNO, S .
MATHEMATICAL PROGRAMMING, 1993, 61 (03) :263-280
[3]  
LUSTIG IJ, 1992, SOR9110 PRINC U DEP
[4]  
MIZUNO S, 1992, 1023 CORN U SCH OP R
[5]  
MIZUNO S, 1006 CORN U SCH OP R
[6]  
MIZUNO S, IN PRESS SIAM J OPTI
[7]   ON Q-ORDER AND R-ORDER OF CONVERGENCE [J].
POTRA, FA .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1989, 63 (03) :415-431
[8]  
POTRA FA, IN PRESS MATH PROGRA
[9]   COMPUTATIONAL SCHEMES FOR LARGE-SCALE PROBLEMS IN EXTENDED LINEAR-QUADRATIC PROGRAMMING [J].
ROCKAFELLAR, RT .
MATHEMATICAL PROGRAMMING, 1990, 48 (03) :447-474
[10]   ON QUADRATIC AND O(ROOT-N L) CONVERGENCE OF A PREDICTOR CORRECTOR ALGORITHM FOR LCP [J].
YE, YY ;
ANSTREICHER, K .
MATHEMATICAL PROGRAMMING, 1993, 62 (03) :537-551