CHEMOTAXIS OF RHIZOBIUM-MELILOTI TOWARDS NODULATION GENE-INDUCING COMPOUNDS FROM ALFALFA ROOTS

被引:80
作者
DHARMATILAKE, AJ
BAUER, WD
机构
[1] OHIO STATE UNIV,DEPT PLANT BIOL,COLUMBUS,OH 43210
[2] OHIO STATE UNIV,DEPT AGRON,COLUMBUS,OH 43210
关键词
D O I
10.1128/AEM.58.4.1153-1158.1992
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Luteolin, a flavone present in seed exudates of alfalfa, induces nodulation genes (nod) in Rhizobium meliloti and also serves as a biochemically specific chemoattractant for the bacterium. The present work shows that R. meliloti RCR2011 is capable of very similar chemotactic responses towards 4',7-dihydroxyflavone, 4',7-Dihydroxyflavanone, and 4,4'-dihydroxy-2-methoxychalcone, the three principal nod gene inducers secreted by alfalfa roots. Chemotactic responses to the root-secreted nod inducers in capillary assays were usually two- to four-fold above background and, for the flavone and flavonone, occurred at concentrations lower than those required for half-maximal induction of the nodABC genes. Complementation experiments indicated that the lack of chemotactic responsiveness to luteolin seen in nodD1 and nodA mutants of R. meliloti was not due to mutations in the nod genes, as previously thought. Thus, while nod gene induction and flavonoid chemotaxis have the same biochemical specificity, these two functions appear to have independent receptors or transduction pathways. The wild-type strain was found to suffer selective, spontaneous loss of chemotaxis towards flavonoids during laboratory subculture.
引用
收藏
页码:1153 / 1158
页数:6
相关论文
共 37 条
[1]   METHOD FOR MEASURING CHEMOTAXIS AND USE OF METHOD TO DETERMINE OPTIMUM CONDITIONS FOR CHEMOTAXIS BY ESCHERICHIA-COLI [J].
ADLER, J .
JOURNAL OF GENERAL MICROBIOLOGY, 1973, 74 (JAN) :77-91
[2]  
AGUILAR JMM, 1988, J GEN MICROBIOL, V134, P2741
[3]   COMPARISON OF THE CHEMOTACTIC BEHAVIOR OF RHIZOBIUM LEGUMINOSARUM WITH AND WITHOUT THE NODULATION PLASMID [J].
ARMITAGE, JP ;
GALLAGHER, A ;
JOHNSTON, AWB .
MOLECULAR MICROBIOLOGY, 1988, 2 (06) :743-748
[4]  
ASHBY AM, 1987, FEMS MICROBIOL LETT, V41, P189, DOI 10.1111/j.1574-6968.1987.tb02194.x
[5]   TI PLASMID-SPECIFIED CHEMOTAXIS OF AGROBACTERIUM-TUMEFACIENS C58C1 TOWARD VIR-INDUCING PHENOLIC-COMPOUNDS AND SOLUBLE FACTORS FROM MONOCOTYLEDONOUS AND DICOTYLEDONOUS PLANTS [J].
ASHBY, AM ;
WATSON, MD ;
LOAKE, GJ ;
SHAW, CH .
JOURNAL OF BACTERIOLOGY, 1988, 170 (09) :4181-4187
[6]   CHEMOTAXIS OF RHIZOBIUM-MELILOTI TO THE PLANT FLAVONE LUTEOLIN REQUIRES FUNCTIONAL NODULATION GENES [J].
CAETANOANOLLES, G ;
CRISTESTES, DK ;
BAUER, WD .
JOURNAL OF BACTERIOLOGY, 1988, 170 (07) :3164-3169
[7]   ROLE OF MOTILITY AND CHEMOTAXIS IN EFFICIENCY OF NODULATION BY RHIZOBIUM-MELILOTI [J].
CAETANOANOLLES, G ;
WALL, LG ;
DEMICHELI, AT ;
MACCHI, EM ;
BAUER, WD ;
FAVELUKES, G .
PLANT PHYSIOLOGY, 1988, 86 (04) :1228-1235
[8]   PISUM-SATIVUM STRESS METABOLITES - 2 CINNAMYLPHENOLS AND A 2'-METHOXYCHALCONE [J].
CARLSON, RE ;
DOLPHIN, DH .
PHYTOCHEMISTRY, 1982, 21 (07) :1733-1736
[9]  
Curl E. A., 1986, RHIZOSPHERE-NETH, DOI DOI 10.1007/978-3-642-70722-3
[10]   ASSIGNMENT OF SYMBIOTIC DEVELOPMENTAL PHENOTYPES TO COMMON AND SPECIFIC NODULATION (NOD) GENETIC-LOCI OF RHIZOBIUM-MELILOTI [J].
DEBELLE, F ;
ROSENBERG, C ;
VASSE, J ;
MAILLET, F ;
MARTINEZ, E ;
DENARIE, J ;
TRUCHET, G .
JOURNAL OF BACTERIOLOGY, 1986, 168 (03) :1075-1086