CELL AVERAGING CHEBYSHEV METHODS FOR HYPERBOLIC PROBLEMS

被引:11
作者
CAI, W
GOTTLIEB, D
HARTEN, A
机构
[1] BROWN UNIV,DIV APPL MATH,PROVIDENCE,RI 02912
[2] TEL AVIV UNIV,IL-69978 TEL AVIV,ISRAEL
基金
美国国家科学基金会;
关键词
D O I
10.1016/0898-1221(92)90039-K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper describes a cell averaging method for the Chebyshev approximations of first order hyperbolic equations in conservation form. We present formulas for transforming between pointwise data at the collocation points and cell averaged quantities, and vice-versa. This step, trivial for the finite difference and Fourier methods, is nontrivial for the global polynomials used in Spectral methods. We then prove that the cell averaging methods presented are stable for linear scalar hyperbolic equations and present numerical simulations of shock-density wave interaction using the new cell averaging Chebyshev methods.
引用
收藏
页码:37 / 49
页数:13
相关论文
共 6 条
[1]   ESSENTIALLY NONOSCILLATORY SPECTRAL FOURIER METHODS FOR SHOCK-WAVE CALCULATIONS [J].
CAI, W ;
GOTTLIEB, D ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :389-410
[2]  
FUNARO D, 1988, MATH COMPUT, V51, P599, DOI 10.1090/S0025-5718-1988-0958637-X
[3]  
GOTTLIEB D, 1983, LECT NOTES MATH, V1127, P115
[4]  
HARTEN A, 1986, 8669 IC REP
[5]   CONVERGENCE OF GENERALIZED MUSCL SCHEMES [J].
OSHER, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (05) :947-961
[6]   EFFICIENT IMPLEMENTATION OF ESSENTIALLY NON-OSCILLATORY SHOCK-CAPTURING SCHEMES .2. [J].
SHU, CW ;
OSHER, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 83 (01) :32-78