A P-1-P-0 FINITE-ELEMENT METHOD FOR A MODEL OF POLYMER CRYSTALLIZATION

被引:5
作者
JIANG, X
NOCHETTO, RH
VERDI, C
机构
[1] UNIV CALIF DAVIS,DEPT MATH,DAVIS,CA 95616
[2] UNIV MARYLAND,DEPT MATH,COLLEGE PK,MD 20742
[3] UNIV MARYLAND,INST PHYS SCI & TECHNOL,COLLEGE PK,MD 20742
[4] UNIV MILAN,DIPARTIMENTO MATEMAT,I-20133 MILAN,ITALY
基金
美国国家科学基金会;
关键词
Algorithms - Approximation theory - Crystallization - Mathematical models - Matrix algebra - Nonlinear equations - Partial differential equations - Piecewise linear techniques - Polymers - Reaction kinetics - Three dimensional - Volume fraction;
D O I
10.1016/0045-7825(95)00820-Q
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider a practical finite element approximation of a three-dimensional model for the crystallization of polymers. The model is a system consisting of a parabolic PDE for the thermal balance coupled with several nonlinear ODEs for the crystallization kinetics. The isokinetic assumption implies a non-Lipschitz continuous dependence of the kinetic equations on the crystalline volume fraction. Piecewise linear elements are used for temperature and piecewise constants for the kinetic variables. The numerical algorithm is simple and easy to implement on a computer. A linear system with the same symmetric positive definite matrix has to be solved per time step. We prove optimal linear L(infinity)L(1) a priori error estimates in terms of both discretization parameters, using monotonicity and L(1) techniques. A relevant simulation in 3-D with axial symmetry shows qualitative agreement of the mathematical model with experimental results.
引用
收藏
页码:303 / 317
页数:15
相关论文
共 19 条
[1]   NUMERICAL-SIMULATION OF POLYMER CRYSTALLIZATION [J].
ANDREUCCI, D ;
FASANO, A ;
PRIMICERIO, M ;
PAOLINI, M ;
VERDI, C .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1994, 4 (01) :135-145
[2]  
ANDREUCCI D, IN PRESS
[3]  
ANDREUCCI D, IN PRESS J MATH ENG
[4]  
ANDREUCCI D, 1991, P ECMI, V4, P3
[5]  
ANDREUCCI D, IN PRESS ADV MATH SC
[6]   Granulation, Phase Change, and Microstructure - Kinetics of Phase Change. III [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1941, 9 (02) :177-184
[7]   Kinetics of phase change I - General theory [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1939, 7 (12) :1103-1112
[8]  
Avrami M., 1940, J CHEM PHYS, V8, P212, DOI DOI 10.1063/1.1750631
[9]  
Brenner S, 1994, MATH THEORY FINITE E
[10]  
Ciarlet P. G., 1973, Computer Methods in Applied Mechanics and Engineering, V2, P17, DOI 10.1016/0045-7825(73)90019-4