INTEGRAL TRANSPORT-THEORY FOR CHARGED-PARTICLES IN ELECTRIC AND MAGNETIC-FIELDS

被引:12
作者
BOFFI, VC
MOLINARI, VG
机构
[1] Laboratorio di Ingegneria Nucleare dell'Università, Bologna
来源
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS | 1979年 / 49卷 / 01期
关键词
D O I
10.1007/BF02737476
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper an integral transport theory for charged particles which, in the presence of electric and magnetic fields, diffuse by collisions against the atoms (or molecules) of a host medium is proposed. The combined effects of both the external fields and the mechanisms of scattering, removal and creation in building up the distribution function of the charged particles considered are investigated. The eigenvalue problem associated with the sourceless case of the given physical situation is also commented. Applications of the theory to a purely velocity-dependent problem and to a space-dependent problem, respectively, are illustrated for the case of a separable isotropic scattering kernel of synthetic type. Calculations of the distribution function, of the total current density and of the relevant electrical conductivity are then carried out for different specializations of the external fields. © 1979 Società Italiana di Fisica.
引用
收藏
页码:77 / 97
页数:21
相关论文
共 6 条
[1]  
BOFFI V, 1974, FISICA REATTORE NUCL, V1
[2]   THEORY OF NON-LINEAR ELECTRICAL-CONDUCTIVITY VIA INTEGRAL BOLTZMANN-EQUATION [J].
BOFFI, VC ;
MOLINARI, VG ;
WONNEBERGER, W .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1978, 45 (01) :109-129
[3]   INTEGRAL BOLTZMANN-EQUATION IN STUDY OF DIFFUSION OF TEST PARTICLES [J].
BOFFI, VC ;
MOLINARI, VG .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1976, 34 (02) :345-364
[4]  
BOFFI VC, FISICA REATTORE NUCL, V2
[5]  
HOLT EH, 1965, PLASMA DYNAMICS
[6]  
Williams M.M.R., 1971, MATH METHODS PARTICL