BRUNN-MINKOWSKI INEQUALITY AND ITS AFTERMATH

被引:32
作者
DASGUPTA, S
机构
关键词
D O I
10.1016/0047-259X(80)90051-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:296 / 318
页数:23
相关论文
共 57 条
[1]  
Anderson T. W., 1964, ANN MATH STAT, V35, P200
[2]  
Anderson T.W., 1955, P AM MATH SOC, V6, P170, DOI [10.2307/2032333, DOI 10.2307/2032333]
[3]   MONOTONICITY OF POWER FUNCTIONS OF SOME TESTS OF INDEPENDENCE BETWEEN 2 SETS OF VARIATES [J].
ANDERSON, TW ;
GUPTA, SD .
ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (01) :206-&
[4]  
BONNESON T, 1929, PROBLEMES ISOPERIMET
[5]  
BONNESON T, 1948, KONVEXE KORPER
[6]  
Borell C., 1975, PERIOD MATH HUNGAR, V6, P111
[7]   ON EXTENSIONS OF BRUNN-MINKOWSKI AND PREKOPA-LEINDLER THEOREMS, INCLUDING INEQUALITIES FOR LOG CONCAVE FUNCTIONS, AND WITH AN APPLICATION TO DIFFUSION EQUATION [J].
BRASCAMP, HJ ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 22 (04) :366-389
[8]  
BRASCAMP HJ, 1974, LOGARITHMIC CONCAVIT
[9]  
BRUNN H., 1887, THESIS MUNCHEN
[10]   UNBIASEDNESS OF TESTS FOR HOMOGENEITY OF VARIANCES [J].
COHEN, A ;
STRAWDER.WE .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (01) :355-&