REMARKABLE PHASE OSCILLATIONS APPEARING IN THE LATTICE-DYNAMICS OF EINSTEIN-PODOLSKY-ROSEN STATES

被引:45
作者
FIVEL, DI
机构
[1] Department of Physics, University of Maryland, College Park
关键词
D O I
10.1103/PhysRevLett.74.835
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that the transformations of Einstein-Podolsky-Rosen states such as those used in communication and cryptography schemes can be described as a hopping motion on a finite phase space lattice associated with a finite Heisenberg group. Quantum mechanical Hamiltonians that generate the hopping are shown to cause phase oscillations characterized by the number-theoretic Legendre symbol. © 1995 The American Physical Society.
引用
收藏
页码:835 / 838
页数:4
相关论文
共 10 条
[1]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[2]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[3]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780
[4]  
FIVEL D, UNPUB
[5]  
HALL M, 1959, THEORY GROUPS, P51
[6]   BASIC ALGEBRA OF ANTILINEAR OPERATORS AND SOME APPLICATIONS .I. [J].
HERBUT, F ;
VUJICIC, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (06) :1345-&
[7]  
HERBUT F, 1971, P INT SCH PHYSICS E
[8]  
HUA LK, 1982, INTRO NUMBER THEORY, P367
[9]  
SCHOENEBERG B, 1974, ELIPTIC MODULAR FUNC, P218
[10]  
VONNEUMANN J, 1955, MATH F QUANTUM MECHA