40Ar/39Ar plateau-ages at 27-28 Ma obtained on feeder dykes and one lava flow of the alkaline massif of Harrat Hadan are in agreement with the assumed age partly deduced from the conventional K/Ar data of the early activity of other alkaline volcanic massifs from Saudi Arabia. This magmatic activity is spatially distributed over a large area, along the western edge of the Arabian plate, and their N-S to NW-SE volcano-tectonic directions are similar to those of the future Red Sea Rift. Preliminary results obtained on tholeiitic lava flows, dykes and plutons gave 17 plateau-ages which, combined with 6 ages deduced from more disturbed age-spectra, display a main histogram peak from 24 to 21 Ma, much narrower than that obtained with conventional K/Ar ages on the same formations. Therefore, a strong tholeiitic activity affected a narrow linear area following the actual eastern Red Sea coast, over nearly 1700 km, during a brief period of time, and without showing any apparent migration. The main volcano-tectonic features of the future Red Sea are strongly outlined during this event. Such brief magmatic episodes related to continental rifts have also been documented by precise 40Ar/39Ar analyses on the British Tertiary Igneous Province, the Deccan traps and the eastern Central Atlantic. 40Ar/39Ar plateau-ages at 27-28 Ma obtained on feeder dykes and one lava flow of the alkaline massif of Harrat Hadan are in agreement with the assumed age partly deduced from the conventional K/Ar data of the early activity of other alkaline volcanic massifs from Saudi Arabia. This magmatic activity is spatially distributed over a large area, along the western edge of the Arabian plate, and their N-S to NW-SE volcano-tectonic directions are similar to those of the future Red Sea Rift. Preliminary results obtained on tholeiitic lava flows, dykes and plutons gave 17 plateau-ages which, combined with 6 ages deduced from more disturbed age-spectra, display a main histogram peak from 24 to 21 Ma, much narrower than that obtained with conventional K/Ar ages on the same formations. Therefore, a strong tholeiitic activity affected a narrow linear area following the actual eastern Red Sea coast, over nearly 1700 km, during a brief period of time, and without showing any apparent migration. The main volcano-tectonic features of the future Red Sea are strongly outlined during this event. Such brief magmatic episodes related to continental rifts have also been documented by precise 40Ar/39Ar analyses on the British Tertiary Igneous Province, the Deccan traps and the eastern Central Atlantic.