V(D)J joining, the immunoglobulin heavy-chain (IgH) class switch, and somatic hypermutation directed at variable regions are unique genetic recombination or mutation events which occur during B-cell differentiation. The enzymatic process directing and controlling these events remains obscure. An assay for exonucleolytic activity has been devised, and an exonuclease activity expressed at high levels in normal B lymphocytes has been detected. The high expression of this enzyme is specific to B lymphocytes and may be developmentally regulated. We have partially purified a B-cell-associated nuclease by column chromatography. Using this preparation, we have begun a rigorous analysis of its activity. This activity is a nonprocessive, 3'-->5' exonuclease with a requirement for divalent cations. Our studies demonstrate that EDTA, poly(dI-dC), and glycerol are all inhibitory to B-cell-associated exonucleolytic activity. The exonuclease displays sequence preference but no sequence specificity when tested on a variety of native DNA substrates. This nuclease is distinct from other exonuclease activities previously described.