KINETICS OF DIAZEPAM METABOLISM IN RAT HEPATIC MICROSOMES AND HEPATOCYTES AND THEIR USE IN PREDICTING IN-VIVO HEPATIC-CLEARANCE

被引:38
作者
ZOMORODI, K [1 ]
CARLILE, DJ [1 ]
HOUSTON, JB [1 ]
机构
[1] UNIV MANCHESTER,DEPT PHARM,MANCHESTER M13 9PL,LANCS,ENGLAND
关键词
D O I
10.3109/00498259509046662
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
1. The rates of diazepam (DZ) metabolism to the primary metabolites 3-hydroxydiazepam, 4'-hydroxydiazepam and nordiazepam were studied in vitro using rat hepatic microsomes and hepatocytes. 4'-hydroxydiazepam had the largest intrinsic clearance (V-max/K-m ratio, CL(int)) in both microsomes and hepatocytes representing 49 and 70% of total metabolism respectively. Whereas the contribution of 3-hydroxydiazepam was similar in both systems (21-24%), the N-demethylation pathway was greater in microsomes (27%) than hepatocytes (9%). 2. The pharmacokinetics of DZ were determined in vivo using the intraportal route to avoid blood flow limitations due to the high clearance of DZ. No dose dependency was observed in either clearance or steady state volume of distribution, which were estimated to be 38 ml/min/SRW (where SRW is a standard rat weight of 250 g) and 1.3 L/SRW respectively. Blood binding of DZ was concentration independent, the unbound fraction being 0.22. 3. Scaling factors were used to relate the in vitro CL(int) to the in vivo unbound clearance. Hepatocytes (123 ml/min/SRW) produced a more realistic prediction for the in vivo value (174 ml/min/SRW) than microsomes (41 ml/min/SRW). This situation is believed to arise from the quantitative differences in the three metabolic pathways in the two in vitro systems. It is speculated that end product inhibition is responsible for reduced total metabolism in microsomes whereas hepatocytes operate kinetically in a manner close to in vivo.
引用
收藏
页码:907 / 916
页数:10
相关论文
共 23 条
[1]   METHOD FOR CHRONIC PORTAL-VEIN INFUSION IN UNRESTRAINED RATS [J].
AKRAWI, SH ;
WEDLUND, PJ .
JOURNAL OF PHARMACOLOGICAL METHODS, 1987, 17 (01) :67-74
[2]  
ASHFORTH EIL, 1995, IN PRESS J PHARM EXP
[3]   DIAZEPAM METABOLISM BY RAT AND HUMAN LIVER INVITRO - INHIBITION BY MEPHENYTOIN [J].
BEISCHLAG, TV ;
KALOW, W ;
MAHON, WA ;
INABA, T .
XENOBIOTICA, 1992, 22 (05) :559-567
[4]   HIGH-YIELD PREPARATION OF ISOLATED RAT LIVER PARENCHYMAL CELLS - A BIOCHEMICAL AND FINE STRUCTURAL STUDY [J].
BERRY, MN ;
FRIEND, DS .
JOURNAL OF CELL BIOLOGY, 1969, 43 (03) :506-+
[5]  
CHENERY RJ, 1987, DRUG METAB DISPOS, V15, P312
[6]   PHARMACOKINETICS OF DIAZEPAM IN THE RAT - INFLUENCE OF A CARBON TETRACHLORIDE-INDUCED HEPATIC-INJURY [J].
DIAZGARCIA, JM ;
OLIVERBOTANA, J ;
FOSGALVE, D .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1992, 81 (08) :768-772
[7]  
FUJITA S, 1990, DRUG METAB DISPOS, V18, P812
[8]   DIAZEPAM DISPOSITION DETERMINANTS [J].
GREENBLATT, DJ ;
ALLEN, MD ;
HARMATZ, JS ;
SHADER, RI .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 1980, 27 (03) :301-312
[9]  
GUENTERT TW, 1984, PROG DRUG METAB, V8, P242
[10]  
HARNS PG, 1974, J APPL PHYSIOL, V36, P391