NONOVERLAPPING PARTITIONS, CONTINUED FRACTIONS, BESSEL-FUNCTIONS AND A DIVERGENT SERIES

被引:24
作者
FLAJOLET, P
SCHOTT, R
机构
[1] INST NATL RECH INFORMAT & AUTOMAT,F-78150 LE CHESNAY,FRANCE
[2] CRIN,F-54506 VANDOEUVRE NANCY,FRANCE
关键词
D O I
10.1016/S0195-6698(13)80025-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The counting sequence of a special class of set partitions leads to special numbers called Bessel numbers. The corresponding ordinary generating function has a simple continued fraction expansion related to Bessel functions. We determine here the asymptotic form of Bessel numbers and discuss their relation to Bell numbers. The estimation problem is of some methodological interest as it is necessary to find the asymptotic form of coefficients in an asymptotic but divergent expansion. © 1990, Academic Press Limited. All rights reserved.
引用
收藏
页码:421 / 432
页数:12
相关论文
共 17 条
[1]  
Chihara TS., 1978, INTRO ORTHOGONAL POL
[2]  
COMTET L, 1974, ADV COMBINATORICS
[3]  
COULOMB J, 1936, B SCI MATH, V60, P297
[4]  
DEBRUIJN NG, 1981, ASYMPTOTIC METHODS A
[5]  
Dekking F.M., 1982, MATH INTELL, V4, P130, DOI [10.1007/BF03024244, DOI 10.1007/BF03024244]
[6]  
Dekking F.M., 1982, MATH INTELL, V4, P190
[7]  
FEDOU JM, 1989, THESIS U BORDEAUX I
[8]   ON CONGRUENCES AND CONTINUED FRACTIONS FOR SOME CLASSICAL COMBINATORIAL QUANTITIES [J].
FLAJOLET, P .
DISCRETE MATHEMATICS, 1982, 41 (02) :145-153
[9]  
FLAJOLET P, 1980, DISCRETE MATH, V32, P125, DOI 10.1016/0012-365X(80)90050-3
[10]  
FLAJOLET P, 1980, J ALGEBRA, V1, P11