A TAXONOMY OF FAIRNESS AND TEMPORAL LOGIC PROBLEMS FOR PETRI NETS

被引:22
作者
HOWELL, RR
ROSIER, LE
YEN, HC
机构
[1] UNIV TEXAS, DEPT COMP SCI, AUSTIN, TX 78712 USA
[2] NATL TAIWAN UNIV, DEPT ELECT ENGN, TAIPEI, TAIWAN
基金
美国国家科学基金会;
关键词
D O I
10.1016/0304-3975(91)90228-T
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we define a temporal logic for reasoning about Petri nets. We show the model checking problem for this logic to be PTIME equivalent to the Petri net reachability problem. Using this logic and two refinements, we show the fair nontermination problem to be PTIME equivalent to reachability for several definitions of fairness. For other versions of fairness, this problem is shown to be either PTIME equivalent to the boundedness problem or highly undecidable. In all, 24 versions of fairness are examined.
引用
收藏
页码:341 / 372
页数:32
相关论文
共 39 条
[1]  
APT K, 1982, 2ND P C F SOFTW TECH, P146
[2]   LIMITS FOR AUTOMATIC VERIFICATION OF FINITE-STATE CONCURRENT SYSTEMS [J].
APT, KR ;
KOZEN, DC .
INFORMATION PROCESSING LETTERS, 1986, 22 (06) :307-309
[3]   PROOF RULES AND TRANSFORMATIONS DEALING WITH FAIRNESS [J].
APT, KR ;
OLDEROG, ER .
SCIENCE OF COMPUTER PROGRAMMING, 1983, 3 (01) :65-100
[4]  
APT KR, 1984, LECT NOTES COMPUT SC, V166, P26
[5]  
Baker H., 1973, RABINS PROOF UNDECID
[6]   CORRECTION [J].
BEST, E .
INFORMATION PROCESSING LETTERS, 1984, 19 (03) :162-162
[7]   FAIRNESS AND CONSPIRACIES [J].
BEST, E .
INFORMATION PROCESSING LETTERS, 1984, 18 (04) :215-220
[8]  
BRAMS GW, 1983, RESEAUX PETRI THEORI, V1
[9]  
CARSTENSEN H, 1987, LECT NOTES COMPUT SC, V247, P396
[10]  
Chandra A. K., 1978, 19th Annual Symposium on Foundations of Computer Science, P127, DOI 10.1109/SFCS.1978.10