PHASE-TRANSITIONS AND TRICRITICAL POINTS - EXACTLY SOLUBLE MODEL FOR MAGNETIC OR DISTORTIVE SYSTEMS

被引:23
作者
SARBACH, S [1 ]
SCHNEIDER, T [1 ]
机构
[1] IBM CORP, ZURICH RES LAB, CH-8803 RUSCHLIKON, SWITZERLAND
关键词
D O I
10.1103/PhysRevB.16.347
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页码:347 / 357
页数:11
相关论文
共 32 条
[1]   CHANGEOVER FROM A CRITICAL LINE TO A TRICRITICAL POINT IN LARGE N-LIMIT [J].
AMIT, DJ ;
DEDOMINI.CT .
PHYSICS LETTERS A, 1973, A 45 (03) :193-195
[2]  
APOSTOL TM, 1957, MATHEMATICAL ANALYSI, P469
[3]   THE SPHERICAL MODEL OF A FERROMAGNET [J].
BERLIN, TH ;
KAC, M .
PHYSICAL REVIEW, 1952, 86 (06) :821-835
[4]  
BLUME M, 1974, ANHARMONIC LATTICES, P245
[5]   EXACTLY SOLVABLE MODEL FOR TRICRITICAL PHENOMENA [J].
EMERY, VJ .
PHYSICAL REVIEW B, 1975, 11 (09) :3397-3405
[6]   RENORMALIZATION GROUP IN THEORY OF CRITICAL BEHAVIOR [J].
FISHER, ME .
REVIEWS OF MODERN PHYSICS, 1974, 46 (04) :597-616
[7]  
Griffiths R. B., 1970, Physical Review Letters, V24, P715, DOI 10.1103/PhysRevLett.24.715
[8]   P(PHI) EUCLIDEAN QUANTUM FIELD-THEORY AS CLASSICAL STATISTICAL-MECHANICS .2. [J].
GUERRA, F ;
ROSEN, L ;
SIMON, B .
ANNALS OF MATHEMATICS, 1975, 101 (02) :191-259
[9]   P(PHI)2 EUCLIDEAN QUANTUM FIELD-THEORY AS CLASSICAL STATISTICAL-MECHANICS [J].
GUERRA, F ;
ROSEN, L ;
SIMON, B .
ANNALS OF MATHEMATICS, 1975, 101 (01) :111-189
[10]   GEOMETRIC PREDICTIONS OF SCALING AT TRICRITICAL POINTS [J].
HANKEY, A ;
STANLEY, HE ;
CHANG, TS .
PHYSICAL REVIEW LETTERS, 1972, 29 (05) :278-&