EXPERIMENTS IN TIDAL MASS CONSERVATION

被引:10
作者
DICKMAN, SR
机构
[1] Department of Geological Sciences, State University of New York, Binghamton, New York
关键词
Earth rotation; mass conservation; ocean tide theory; spherical harmonics;
D O I
10.1111/j.1365-246X.1990.tb00545.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A common feature of theoretical ocean tide models is their failure to conserve mass over the oceans. This failure distorts the tidal solution and imparts ambiguity to the calculation of tidal effects on gravity, crustal loading, and Earth rotation; for example, predicted effects of long‐period tides on rotation could be uncertain by up to 50 per cent in magnitude and 100 per cent in phase. Using the spherical harmonic tide theory developed by Dickman (1989), the influence of various global conservation constraints on the tidal solution is explored. an ocean‐wide mass conservation constraint, implemented using Lagrange multipliers, produces a realistic and significantly more accurate and unambiguous tidal solution. Copyright © 1990, Wiley Blackwell. All rights reserved
引用
收藏
页码:257 / 262
页数:6
相关论文
共 19 条
[1]   CONSERVATION OF MASS IN TIDAL LOADING COMPUTATIONS [J].
AGNEW, DC .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1983, 72 (02) :321-325
[2]   THE VARIATION WITH FREQUENCY OF THE LONG-PERIOD TIDES [J].
CARTON, JA .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1983, 88 (NC12) :7563-7571
[3]   OCEANIC TIDES [J].
CARTWRIGHT, DE .
REPORTS ON PROGRESS IN PHYSICS, 1977, 40 (06) :665-708
[4]   OBSERVED TIDAL BRAKING IN THE EARTH MOON SUN SYSTEM [J].
CHRISTODOULIDIS, DC ;
SMITH, DE ;
WILLIAMSON, RG ;
KLOSKO, SM .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1988, 93 (B6) :6216-6236
[5]  
Darwin G. H., 1886, P R SOC LOND, V40, P303
[6]   A COMPLETE SPHERICAL HARMONIC APPROACH TO LUNI SOLAR TIDES [J].
DICKMAN, SR .
GEOPHYSICAL JOURNAL INTERNATIONAL, 1989, 99 (03) :457-468
[7]   THE SELF-CONSISTENT DYNAMIC POLE TIDE IN NON-GLOBAL OCEANS [J].
DICKMAN, SR .
GEOPHYSICAL JOURNAL-OXFORD, 1988, 94 (03) :519-543
[8]  
Lambeck K., 2005, EARTHS VARIABLE ROTA
[9]  
LUTHER DS, 1980, THESIS MIT CAMBRIDGE
[10]  
Menke W., 1984, GEOPHYS DATA ANAL DI