ON THE RESIDUE OF A GRAPH

被引:33
作者
FAVARON, O
MAHEO, M
SACLE, JF
机构
[1] L.R.I, U.A. 410 C.N.R.S, Orsay, 91405, BǍT. 490, Université Paris—Sud
关键词
D O I
10.1002/jgt.3190150107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The residue R of a simple graph G of degree sequence S: d1 greater-than-or-equal-to d2 greater-than-or-equal-to ... greater-than-or-equal-to d(n) is the number of zeros obtained by the iterative process consisting of deleting the first term d1 of S, subtracting 1 from the d1 following ones, and sorting down the new sequence. The depth is the number n - R of steps in this algorithm. We prove here some conjectures given by the computer program GRAFFITI, in particular, R less-than-or-equal-to alpha, where alpha is the independence number of G. If G is a tree: mu less-than-or-equal-to R, where mu is the mean distance of G.
引用
收藏
页码:39 / 64
页数:26
相关论文
共 10 条
[1]  
BEEZER RA, CONJECTURES GRAFFITI
[2]  
Behzad M., 1979, GRAPHS DIGRAPHS
[3]  
Berge C., 1973, GRAPHS HYPERGRAPHS
[4]  
FAJTLOWICZ S, 1988, 3 C NUM, V66, P23
[5]   LOWER BOUNDS ON THE INDEPENDENCE NUMBER IN TERMS OF THE DEGREES [J].
GRIGGS, JR .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 34 (01) :22-39
[6]  
Hansen P., 1979, REV ROUMAINE MATH PU, V24, P1195
[7]  
HANSEN P, 1975, CAHIERS CTR ETUDES R, V17, P213
[8]   ON THE SUM OF ALL DISTANCES IN A GRAPH OR DIGRAPH [J].
PLESNIK, J .
JOURNAL OF GRAPH THEORY, 1984, 8 (01) :1-21
[9]  
STATON W, 1988, CONGRESSUS NUMERATIU, V65, P245
[10]  
WEI VK, LOWER BOUND STABILIT