PRE-FRAME OPERATORS, BESSELIAN FRAMES, AND NEAR-RIESZ BASES IN HILBERT-SPACES

被引:79
作者
HOLUB, JR
机构
关键词
FRAME; RIESZ BASIS; FREDHOLM OPERATOR;
D O I
10.2307/2160754
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A problem of enduring interest in connection with the study of frames in Hilbert space is that of characterizing those frames which can essentially be regarded as Riesz bases for computational purposes or which have certain desirable properties of Riesz bases. In this paper we study several aspects of this problem using the notion of a pre-frame operator and a model theory for frames derived from this notion. In particular, we show that the deletion of a finite set of vectors from a frame {x(n)}(infinity)(n=1) leaves a Riesz basis if and only if the frame is Besselian (i.e., Sigma(n=1)(infinity) a(n)x(n) converges double left right arrow (a(n)) epsilon l(2)).
引用
收藏
页码:779 / 785
页数:7
相关论文
共 12 条
[1]   PAINLESS NONORTHOGONAL EXPANSIONS [J].
DAUBECHIES, I ;
GROSSMANN, A ;
MEYER, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) :1271-1283
[2]  
DAUBECHIES I, IN PRESS FRAMES COHE
[3]   A CLASS OF NONHARMONIC FOURIER SERIES [J].
DUFFIN, RJ ;
SCHAEFFER, AC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 72 (MAR) :341-366
[4]  
Dunford N, 1963, LINEAR OPERATORS, VI
[5]  
HEIL C, 1990, MATH APPL, V22, P147
[6]  
Heil C., 1990, THESIS U MARYLAND CO
[7]   BARGMANN TRANSFORM, ZAK TRANSFORM, AND COHERENT STATES [J].
JANSSEN, AJEM .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (05) :720-731
[8]  
RETHERFORD JR, 1971, J REINE ANGEW MATH, V246, P136
[9]  
Schatten R., 1970, NORM IDEALS COMPLETE
[10]  
Schechter M., 1971, GRADUATE STUDIES MAT