A NORMAL LIMIT-THEOREM FOR MOMENT SEQUENCES

被引:24
作者
CHANG, FC [1 ]
KEMPERMAN, JHB [1 ]
STUDDEN, WJ [1 ]
机构
[1] RUTGERS UNIV,DEPT STAT,NEW BRUNSWICK,NJ 08903
关键词
MOMENT SPACES; CANONICAL MOMENTS; NORMAL LIMIT; RANDOM WALK;
D O I
10.1214/aop/1176989119
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let LAMBDA be the set of probability measures lambda on [0, 1]. Let M(n) = {(c1,..., c(n))\lambda is-an-element-of LAMBDA), where c(k) = c(k)(lambda) = integral-1/0x(k) dlambda, k = 1, 2,... are the ordinary moments, and assign to the moment space M(n) the uniform probability measure P(n). We show that, as n --> infinity, the fixed section (c1,..., c(k)), properly normalized, is asymptotically normally distributed. That is, square-root n[(c1,..., c(k)) - (c1(0),..., c(k)0] converges to MVN(0, SIGMA), where c(i)0 correspond to the arc sine law lambda0 on [0, 1]. Properties of the k x k matrix SIGMA are given as well as some further discussion.
引用
收藏
页码:1295 / 1309
页数:15
相关论文
共 9 条
[1]  
Abramowitz M., 1965, HDB MATH FUNCTIONS
[2]  
HENRICI P, 1977, APPLIED COMPUTATIONA, V2
[3]  
KARLIN S, 1959, ILLINOIS J MATH, V3, P66, DOI DOI 10.1215/IJM/1255454999
[4]  
Karlin S., 1966, TCHEBYCHEFF SYSTEMS
[5]  
LAU TS, 1983, 8323 PURD U DEP STAT
[6]  
LAU TS, 1983, 8324 PURD U DEP STAT
[7]   RANGE OF (N + 1)TH MOMENT FOR DISTRIBUTIONS ON [0 1] [J].
SKIBINSK.M .
JOURNAL OF APPLIED PROBABILITY, 1967, 4 (03) :543-&
[8]   SOME STRIKING PROPERTIES OF BINOMIAL AND BETA MOMENTS [J].
SKIBINSK.M .
ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (05) :1753-&