INVERSE RADON TRANSFORMS THROUGH INVERSE WAVELET TRANSFORMS

被引:54
作者
HOLSCHNEIDER, M [1 ]
机构
[1] ECOLE NORM SUPER,METEOROL DYNAM LAB,F-75231 PARIS 05,FRANCE
关键词
D O I
10.1088/0266-5611/7/6/008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show, by considering the Radon inversion problem as an example, how use the inverse wavelet transform technique to invert data obtained from non-orthogonal projections having some underlying symmetry group.
引用
收藏
页码:853 / 861
页数:9
相关论文
共 12 条
[1]  
ARNODO A, 1988, PHYS REV LETT, V61, P2281
[2]  
BERNSTEIN S, 1914, C R ACAD SCI PARIS
[3]   TRANSFORMS ASSOCIATED TO SQUARE INTEGRABLE GROUP-REPRESENTATIONS .1. GENERAL RESULTS [J].
GROSSMANN, A ;
MORLET, J ;
PAUL, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (10) :2473-2479
[4]   DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE [J].
GROSSMANN, A ;
MORLET, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1984, 15 (04) :723-736
[5]   POINTWISE ANALYSIS OF RIEMANN NONDIFFERENTIABLE FUNCTION [J].
HOLSCHNEIDER, M ;
TCHAMITCHIAN, P .
INVENTIONES MATHEMATICAE, 1991, 105 (01) :157-175
[6]  
HOSCHNEIDER M, 1988, J STAT PHYS, V50, P953
[7]  
Kronland-Martinet R., 1987, INT J PATT RECOGN AR, V01, P273, DOI [10.1142/S0218001487000205, DOI 10.1142/S0218001487000205]
[9]  
MEYER Y, 1990, ONDELETTES
[10]  
MOURENZI R, 1990, THESIS LOUVAIN NEUVE