PERIODIC HOMOGENIZATION OF CERTAIN FULLY NONLINEAR PARTIAL-DIFFERENTIAL EQUATIONS

被引:227
作者
EVANS, LC
机构
[1] Department of Mathematics, University of California, Berkeley
基金
美国国家科学基金会;
关键词
D O I
10.1017/S0308210500032121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We demonstrate how a fairly simple "perturbed test function" method establishes periodic homogenisation for certain Hamilton-Jacobi and fully nonlinear elliptic partial differential equations. The idea, following Lions, Papanicolaou and Varadhan, is to introduce (possibly nonsmooth) correctors, and to modify appropriately the theory of viscosity solutions, so as to eliminate then the effects of high-frequency oscillations in the coefficients.
引用
收藏
页码:245 / 265
页数:21
相关论文
共 19 条
[1]   EXIT TIME PROBLEMS IN OPTIMAL-CONTROL AND VANISHING VISCOSITY METHOD [J].
BARLES, G ;
PERTHAME, B .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (05) :1133-1148
[2]   HOMOGENIZATION OF ELLIPTIC-EQUATIONS WITH PRINCIPAL PART NOT IN DIVERGENCE FORM AND HAMILTONIAN WITH QUADRATIC GROWTH [J].
BENSOUSSAN, A ;
BOCCARDO, L ;
MURAT, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (06) :769-805
[3]  
Bensoussan A., 1978, ASYMPTOTIC ANAL PERI
[4]  
BOCCARDO L, 1982, 1981 ATT CONV STUD P
[5]  
CAFFARELLI L, NOTE HARNACKS INEQUA
[6]   SOME PROPERTIES OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
EVANS, LC ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :487-502
[7]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[8]  
EVANS LC, IN PRESS P ROY SOC A
[9]   ON UNIQUENESS AND EXISTENCE OF VISCOSITY SOLUTIONS OF FULLY NONLINEAR 2ND-ORDER ELLIPTIC PDES [J].
ISHII, H .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (01) :15-45
[10]  
ISHII H, BOUNDARY VALUE PROBL