RENORMALIZATION FOR QUANTUM-SYSTEMS - GENERALIZED BLOCK TRANSFORMATIONS IN THE LARGE-L LIMIT

被引:12
作者
IGLOI, F
机构
[1] Research Institute for Solid State Physics, H-1525 Budapest
来源
PHYSICAL REVIEW B | 1993年 / 48卷 / 01期
关键词
D O I
10.1103/PhysRevB.48.58
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The renormalization-group (RG) transformation for the one-dimensional quantum Ising model has been performed exactly for two different block transformations with arbitrary size of the block (L). The recursion equations have been generalized in the large-L limit for other models using finite-size scaling ideas. We show that the success of the real-space RG method for the quantum Ising model is accidental. For other models the RG transformation generally mixes up the surface and bulk properties of the model such that strong block-size corrections appear.
引用
收藏
页码:58 / 61
页数:4
相关论文
共 17 条
[1]  
[Anonymous], 1983, PHASE TRANSITIONS CR
[2]  
[Anonymous], 1983, PHASE TRANSITIONS CR
[3]  
CARDY JL, 1988, PHASE TRANSITIONS CR, V11
[4]   COLLECTIVE MOTIONS OF HYDROGEN BONDS [J].
DEGENNES, PG .
SOLID STATE COMMUNICATIONS, 1963, 1 (06) :132-137
[5]   STRONG-COUPLING FIELD-THEORY .1. VARIATIONAL APPROACH TO PHI-4 THEORY [J].
DRELL, SD ;
WEINSTEIN, M ;
YANKIELOWICZ, S .
PHYSICAL REVIEW D, 1976, 14 (02) :487-516
[6]   COMMENT ON THE SLAC RENORMALIZATION-GROUP APPROACH TO THE ISING CHAIN IN A TRANSVERSE MAGNETIC-FIELD [J].
FERNANDEZPACHECO, A .
PHYSICAL REVIEW D, 1979, 19 (10) :3173-3175
[7]   RENORMALIZATION-GROUP STUDY OF THE HAMILTONIAN VERSION OF THE POTTS-MODEL .2. SELF-DUAL RENORMALIZATION-GROUP TREATMENT [J].
IGLOI, F ;
SOLYOM, J .
PHYSICAL REVIEW B, 1983, 28 (05) :2785-2791
[8]   ZERO-TEMPERATURE RENORMALIZATION METHOD FOR QUANTUM SYSTEMS .1. ISING-MODEL IN A TRANSVERSE FIELD IN ONE DIMENSION [J].
JULLIEN, R ;
PFEUTY, P ;
FIELDS, JN ;
DONIACH, S .
PHYSICAL REVIEW B, 1978, 18 (07) :3568-3578
[10]   INTRODUCTION TO LATTICE GAUGE-THEORY AND SPIN SYSTEMS [J].
KOGUT, JB .
REVIEWS OF MODERN PHYSICS, 1979, 51 (04) :659-713