PARALLEL ALGORITHMS FOR MINIMUM CUTS AND MAXIMUM FLOWS IN PLANAR NETWORKS

被引:22
作者
JOHNSON, DB
机构
关键词
D O I
10.1145/31846.31849
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:950 / 967
页数:18
相关论文
共 19 条
[1]  
Ford LR., 1956, CAN J MATH, V8, P399, DOI DOI 10.4153/CJM-1956-045-5
[2]  
Frederickson G. N., 1983, 24th Annual Symposium on Foundations of Computer Science, P242, DOI 10.1109/SFCS.1983.69
[3]  
Galil Z., 1978, 19th Annual Symposium on Foundations of Computer Science, P231, DOI 10.1109/SFCS.1978.5
[4]   THE MAXIMUM FLOW PROBLEM IS LOG SPACE COMPLETE FOR P [J].
GOLDSCHLAGER, LM ;
SHAW, RA ;
STAPLES, J .
THEORETICAL COMPUTER SCIENCE, 1982, 21 (01) :105-111
[5]  
Harary F., 1969, GRAPH THEORY, DOI DOI 10.1201/9780429493768
[6]   AN O(N LOG2 N) ALGORITHM FOR MAXIMUM FLOW IN UNDIRECTED PLANAR NETWORKS [J].
HASSIN, R ;
JOHNSON, DB .
SIAM JOURNAL ON COMPUTING, 1985, 14 (03) :612-624
[7]   MAXIMUM FLOW IN (S,T) PLANAR NETWORKS [J].
HASSIN, R .
INFORMATION PROCESSING LETTERS, 1981, 13 (03) :107-107
[8]  
Itai A., 1979, SIAM Journal on Computing, V8, P135, DOI 10.1137/0208012
[9]   A NOTE ON FINDING MINIMUM CUTS IN DIRECTED PLANAR NETWORKS BY PARALLEL COMPUTATIONS [J].
JANIGA, L ;
KOUBEK, V .
INFORMATION PROCESSING LETTERS, 1985, 21 (02) :75-78
[10]  
Johnson D. B., 1982, 20TH P ANN ALL C COM, P898