SITE-DIRECTED MUTAGENESIS OF GLUTATHIONE-S-TRANSFERASE YAYA - NONESSENTIAL ROLE OF HISTIDINE IN CATALYSIS

被引:30
作者
WANG, RW [1 ]
NEWTON, DJ [1 ]
PICKETT, CB [1 ]
LU, AYH [1 ]
机构
[1] MERCK FROSST CTR THERAPEUT RES,DORVAL H9R 4P8,QUEBEC,CANADA
关键词
D O I
10.1016/0003-9861(91)90082-T
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A cDNA encoding a rat liver glutathione S-transferase Ya subunit has been expressed in Escherichia coli and the expressed enzyme purified to homogeneity. In order to examine the catalytic role of histidine in the glutathione S-transferase Ya homodimer, site-directed mutagenesis was used to replace all three histidine residues (at positions 8, 143, and 159) by other amino acid residues. The replacement of histidine 8 or histidine 143 with valine did not affect the 1-chloro-2,4-dinitrobenzene-conjugating activity nor the isomerase activity. However, the replacement of histidine with valine at position 159 produced the mutant GST which exhibited only partial activity. A greater decrease in catalytic activity was observed by histidine → tyrosine or histidine → lysine replacement at position 159. On the other hand, the histidine 159 → asparagine mutant retained full catalytic activity. Our results indicate that histidine residues in the Ya homodimer are not essential for catalytic activity. However, histidine 159 might be critical in maintaining the proper conformation of this enzyme since replacement of this amino acid by either lysine or tyrosine did result in significant loss of enzymatic activity. © 1991.
引用
收藏
页码:574 / 578
页数:5
相关论文
共 31 条
[1]  
ADANG AEP, 1988, BIOCHEM J, V255, P721
[2]   INTERACTION OF RAT GLUTATHIONE S-TRANSFERASE-7-7 AND S-TRANSFERASE-8-8 WITH GAMMA-GLUTAMYL-MODIFIED OR GLYCYL-MODIFIED GLUTATHIONE ANALOGS [J].
ADANG, AEP ;
MEYER, DJ ;
BRUSSEE, J ;
VANDERGEN, A ;
KETTERER, B ;
MULDER, GJ .
BIOCHEMICAL JOURNAL, 1989, 264 (03) :759-764
[3]   ENZYME-CATALYZED DETOXICATION REACTIONS - MECHANISMS AND STEREOCHEMISTRY [J].
ARMSTRONG, RN .
CRC CRITICAL REVIEWS IN BIOCHEMISTRY, 1987, 22 (01) :39-88
[4]   EVIDENCE FOR THE INVOLVEMENT OF HISTIDINE AT THE ACTIVE-SITE OF GLUTATHIONE-S-TRANSFERASE PHI FROM HUMAN-LIVER [J].
AWASTHI, YC ;
BHATNAGAR, A ;
SINGH, SV .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1987, 143 (03) :965-970
[5]   ROLE OF REDUCED GLUTATHIONE IN DELTA-5-3-KETOSTEROID ISOMERASE REACTION OF LIVER [J].
BENSON, AM ;
TALALAY, P .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1976, 69 (04) :1073-1079
[6]   THE GLUTATHIONE S-TRANSFERASES - AN UPDATE [J].
BOYER, TD .
HEPATOLOGY, 1989, 9 (03) :486-496
[7]  
Chasseaud L F, 1979, Adv Cancer Res, V29, P175, DOI 10.1016/S0065-230X(08)60848-9
[8]   DISSECTION OF THE CATALYTIC MECHANISM OF ISOZYME 4-4 OF GLUTATHIONE S-TRANSFERASE WITH ALTERNATIVE SUBSTRATES [J].
CHEN, WJ ;
GRAMINSKI, GF ;
ARMSTRONG, RN .
BIOCHEMISTRY, 1988, 27 (02) :647-654
[9]   NONCHROMOSOMAL ANTIBIOTIC RESISTANCE IN BACTERIA - GENETIC TRANSFORMATION OF ESCHERICHIA-COLI BY R-FACTOR DNA [J].
COHEN, SN ;
CHANG, ACY ;
HSU, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1972, 69 (08) :2110-&
[10]   THE ROLE OF GLUTATHIONE AND GLUTATHIONE TRANSFERASES IN CHEMICAL CARCINOGENESIS [J].
COLES, B ;
KETTERER, B .
CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1990, 25 (01) :47-70