REFINED ASYMPTOTICS FOR THE BLOWUP OF UT-DELTA-U = UP

被引:152
作者
FILIPPAS, S [1 ]
KOHN, RV [1 ]
机构
[1] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
关键词
D O I
10.1002/cpa.3160450703
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is concerned with positive, blowing-up solutions of the semilinear heat equation u(t) - DELTA-u = u(P) in R(n). Our main contribution is a sort of center manifold analysis for the equation in similarity variables, leading to refined asymptotics for u in a backward space-time parabola near any blowup point. We also explore a connection between the asymptotics of u and the local geometry of the blowup set.
引用
收藏
页码:821 / 869
页数:49
相关论文
共 23 条
[11]   ASYMPTOTICALLY SELF-SIMILAR BLOW-UP OF SEMILINEAR HEAT-EQUATIONS [J].
GIGA, Y ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (03) :297-319
[12]   CHARACTERIZING BLOWUP USING SIMILARITY VARIABLES [J].
GIGA, Y ;
KOHN, RV .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1987, 36 (01) :1-40
[13]  
GIGA Y, 1989, COMMUN PUR APPL MATH, V42, P297
[14]  
Gilbarg D., 1983, ELLIPTIC PARTIAL DIF
[15]  
HERRERO M, IN PRESS INTEGRAL DI
[16]  
HERRERO MA, IN PRESS ANN I H POI
[17]  
HERRERO MA, IN PRESS COMM PDE
[18]  
KELLER J, UNPUB
[19]  
KIRCHGRABER U, 1989, DYNAMICS REPORTED, V2
[20]  
LIU W, 1990, IMA711 PREPR